Л. Л. ПОПА

РЫБЫ БАССЕЙНА РЕКИ ПРУТ
(Систематический обзор)
ПРЕДИСЛОВИЕ

Рыбная промышленность, являясь одним из главных поставщиков белка живого производства, в нашей стране занимает важное место среди других отраслей народного хозяйства. Так в 1970 г. 15% фактического потребления животного белка населением СССР было удовлетворено за счет рыбы (В.Р. Протасов, Б.Н. Мельников, А.Д. Дубровский, 1973).

Рост населения и повышение его благосостояния ставит перед рыбным хозяйством нашей страны задачу дальнейшего увеличения уловов на ближайшие 15 лет примерно на 90 млн. ц, в том числе из внутренних водоемов и территориальных прибрежных вод до 60 млн. ц рыбы (Е.В. Кожокару, М.А. Полт, 1973).

Реконструкция водного хозяйства республики, проблемы рационального использования и воспроизводства рыбных ресурсов ставят перед нами огромные задачи: связать воедино все имеющиеся сведения о рыбах и рыбном промысле Прута, уточнить способ оставления рыбы (на уровне современной науки) и выявить морфо-эколого-экологическую характеристику основных промысловых рыб.

Прут — горная река и протекает через разные ландшафтно-географические зоны, поэтому изучение характера распространения ихтиофауны по участкам реки также представляет определенный интерес. Необходимо отметить, что само русле Прута более 30 лет находится вне сферы влияния промысла, это также является одним из факторов, на которые необходимо обратить внимание.

Известно, что по окончании строительства Костенекской ГЭС само водохранилище и значительная часть русле реки станут местом промысла, а для этого необходимо сейчас определить количество запасов, динамику стада рыб и дать конкретные предложения для планового ведения добывы рыб без ущерба производственных запасов в данном бассейне. Рациональное рыбное хозяйство не может быть без активного взаимодействия человека с динамикой стада рыб, без проведения широкого комплекса мероприятий по управлению продуктивностью водоемов. Советуются ихтиологи пришли к выводу, что чем современнее форма хозяйства, тем выше продуктивность водоемов. Отсюда вытекает наша главная задача — до открытия промысла на р. Прут провести всесторонние ихтиологические исследования.

Однако дать исчерпывающий отчет на все вышенеперечисленные вопросы в данной работе невозможно, поэтому мы остановимся только на некоторых из них: краткий исторический обзор исследования ихтиофауны р. Прут, физико-географическая характеристика реки и систематический обзор рыб бассейна р. Прут. Вопрос о роли истории формирования современной ихтиофауны Прута, ее распространение, характеристика ихтиофаунастики комплексов и рыбохозяйственное значение реки будут рассмотрены нами в отдельной работе.

Для морфометрической характеристики ряда рыб промерено 1622 экз. Возраст изучали по 2 тыс. чешуек, питание — по 972 жалдым, плодовитость и половозрелость — по 95 пробам. Всюшую изучали морфо-гистологические методы, используя статистические методы. Для этого, чтобы пластические признаки были сравнимы, они выражены в процентах к длине тела без "O". Признаки, характеризующие отдельные детали головы, вырезаны в процентах к ее длине. Вычисляли средний арифметический (М), среднее квадратическое отклонение (С), ошибку средней арифметической (σ), коэффициент вариации (C) и пределы колебаний признаков. Различия по каждой-либо признаку считали достоверными, если разница средних (M_dif.) была более 3,5. Возраст устанавливали по чешуе или по срезам грудного плавника (для осмов), которые рассматривали через обозначенный фотомикоскоп и микроскоп МБС-1. Проекция чешуи зарисовывали или фотографировали и потом при помощи досок Л. Л. Попова изображения расчеты и определяли темп роста. Молодь отдельных видов рыб изучали под микроскопом МБС-1 по тому же принципу, что и взрослых. Этот же микроиск был использован и при изучении материала по питанию и размножению.

ФИЗИКО-ГЕОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА
БАССЕЙНА РЕКИ ПРУТ

После Кантемира более полные данные о р. Прут встречается только в работах Л.С. Берга (1918, 1947-1952) и И.К. Могилевского (1911). Поэтому физико-географические особенности Прута составлялись по материалам наших собственных наблюдений с учетом литературных данных.

Три главных истока Прута берут свое начало в ложбинах между вершинами Говерла и Брецку, Прецикул и Плужинская, третий исток начинается с озера Неасоватое (1600 м над уровнем моря), расположенного с северной стороны горы Плужинская. Эти истоки через 10–15 км соединяются и образуют реку. Главные притоки Прута: с правой стороны - Пшенычка длиной 57 км с водосборной площадью 265 км², Рыбница длиной 56 км, Черемош длиной 79 км с водосборной площадью 2565 км², Валовец - 45 км, Ляхия длиной в среднем 250 км; с левой - Терка длиной 40 км с водосборной площадью 310 км², Чернигов - 63 км, Лопатник - 51 км, Раковец - 63 км, Чугур - 75 км (Л.Л. Попа, 1961). Они скоординированы в основном в верхней части реки, так как на протяжении 500 км до самого впадения в Дунай она принимает всего одну р. Ляхию. Остальные притоки в этой части не постоянны и в заушины годы часто пересыхают. Притоки, которые не указаны, очень маленькие, их значение в водном бассейне р. Прут незначительное, так как большинство из них не достигает до нее. Большая часть года они безводны (реки Каменка, Лопушна, Саратая, Йерга и др.).

Кроме указанных притоков вдоль Прута находится ряд озер и старин, называемых местным народом "Прутенами". Они имеются вдоль городов Копома, Леово и сел Волочино, Макарешти, Была и др.

Рис.1. Падение уклонов местности р. Прут от истоков (H - высота над уровнем моря) до устья (L - расстояние от устья) га - горный участок; 3 = 4 - 13 м/км; 1 - предгорный участок; 3 = 3 - 7 м/км; 3 - равнинный участок; 3 = 13 - 3 м/км; 3 - устьевой; 3 = 0,1 - 1,5 м/км

Ниже г. Леово русло реки до 1967 г. было ограничено прудами общей площадью 27 090 га. После осушения сохранились только озера Дракуле (270 га), Болтане (150 га), Белая (900 га). Все эти озера покрываются в основном за счет вод Прута, поэтому они считаются подземными. Значительная часть их зеркала покрыта камышом, тростником и другой растительностью. Часть осушенных прудов впоследствии под овошь, зеленый корень для животноводства и другие сельскохозяйственные культуры. Ниже г. Кагула создан ряд прудов (нерестовые и нагульные) Кагульского рыбокомбината.
В верховьях, до Коломы, Прут течет в северо-восточном направлении по горным ущельям. Берега обрывисты, покрыты карпатскими лесами. От г.Коломы река поворачивает на юго-восток, охраняя большую скорость течения до г.Снятин, омывая много терророгенных веществ (Гидрологический ежегодник, 1966). Берега тут не так обрывисты и Карпатские леса местами уступают степям.

В районе Запань-Кошта Прут протекает вдоль толстых гряд, поэтому здесь встречается большое количество перекатов. Ниже река проходит через Бельские степи, в районе Макарешты течет мимо Молдавских вод и выходит на Буджакские степи.

По своему гидрологическому режиму Прут относится к горным рекам (П.А.Олух, 1963, Л.П.Попа, 1964а). Так как понижение уровня реки на каждый километр протяженности в среднем равно 1,7 м (рис.1), скорость течения 0,5 - 3,0 м/с, грунт в основном каменисто-галечный и песчаный, количество растворенного в воде кислорода в нижнем-меле равно 4-9 см3 на литр и pH 6,5-7,0. Местами имеются пороги с водопадами высота которых достигает в районах Яремчи 4 м (Л.П.Попа, 1964а).

Температура воды р.Прут в разных точках неоднинакова и по мере приближения к устью заметно повышается. Например, средняя температура воды за июнь 1961 г., по данным гидрометслужбы, в с.Круканы была 15,9°, у с.Яремчи - 18,9°, у г.Коломы - 20,9°, у г.Черновцы - 20,6°, у с.Ладианы - 22,8°, у г.Ужгорода - 23,3°, у г.Львова - 23,8° и у с.Бряны - 23,0°. Наибольшая среднемесячная температура воды Прута приходится на июль и достигает в нижних у с.Брыны 27°.

Количество осадков вдоль всего бассейна также неодинаково. В верховьях выпадает 800-1000 мм осадков в год, а в среднем и нижнем течении - 300-600 мм (К.В.Панько и Т.Г.Рудан, 1960). Основные осадки приходятся на летний период (Д.Н.Миркин и М.М.Раду, 1963).

Прут относится к группе рек с наводнением режимом, так как в его водном балансе основную роль играют тальные воды и атмосферные осадки. Поэтому река по расходу и уровню воды находится в прямой зависимости от количества осадков. Но так как количество осадков распределено неравномерно и уровню воды претерпевает большие колебания, то в динамике уровня и расходов воды не наблюдается двух пик (рис.2), как у ответных рек, а отмечается неопределенность, характерная для горных рек. Уровень воды подвергается резким скачкам в течение всего года и на всем протяжении реки. Расход воды на разных участках реки неодинаков, так

Рис. 2. Колебания уровня воды р.Прут за 1961 год.

Например, около г.Яремчи 2,42-7,56, у г.Черновцы 1,0-88,6, а в устьевой части 75-85 м3/с.

Талыми водами р.Прут питается с марта по июль, когда снеготаяние охватывает всю высокогорную зону. На этот период приходится 50-55% паводков (В.Е.Истанов, 1953). Подземные воды, вы
ход которых соконцентрирован на участке реки от с.Болотино до с. Скулинцы, незначительно.

Пруд — быстротекущая река, скорость ее течения в среднем 0,8-1,0 м/с. Дно реки в верховьях из осиновой древесной растительности, а плесы сохраняются только в старицах Пруда. От г.Снятин до с.Костецы часто попадается песчаное дно. От с.Костецы до самого устья характер дна напоминает слоистые песчаники. Количество мечево возрастает. Берега становятся пологими.

Вода Пруда довольно мутная. По скорости течения и по количеству километров можно установить, что по мере приближения к устью реки скорость и количество километров в I и II водном контроле уменьшаются. Прозрачность воды зависит от того, насколько она прозрачна, чем вода Днепра. Пруд по гидрографическому режиму по Д.Комякину (1968) относится к среднему району минерализации и к классу кальце-водородной группы. Средняя минерализация 248-371 мг/л (В.Г. Грицай, 1970). Пруд по многим признакам отличается от р.Днестр: по уклону русла, по расходу и колебанию уровня воды, по количеству километров, характеру берегов и дна, по температуре воды. Принимая во внимание вышеизложенное, р.Пруд можно делить на 4 участка:

Горный участок от истоков до г.Снятин (около 200 км), коэффициент понижения в среднем 6,4; скорость течения 1,5-2,0 м/с, рН — 7,5; количество километров 7-9 км. Температура воды в среднем за июнь 14-15°, характерными для данного участка являются криофильные, литоральные, степно-каканские организмы. Предгорным участком считаются участки от г.Снятин до с.Костецы. Здесь река выходит на равнину и сильно меняется, борта реки и береги реки. Коэффициент уклонов местности 4-5, скорость течения 1,0-1,5 м/с, рН летом в среднем 7, количество километров 5-6 км, температура воды в июне в среднем 17-19°. На этом участке наблюдается большое разнообразие гидробионтов как в горных, так и в равнинных комплексах.

К равнинному участку следует отнести отрезок реки от с.Костецы до г.Левобережье. Коэффициент уклонов реки в среднем 2, скорость течения около 0,8 м/с. Количество километров в среднем (летом) около 5 см/км. Русло продолжает меняется, среднегодовая температура воды в июне 20-22°. Гидробионты данного участка менее разнообразны, биомасса незначительна и состоит в основном из растительных и лимфофициальных теплокровных организмов.

От г.Левобережье в Днепр река переходит в пределы Днепр. Относительно незначительный участок реки, где наблюдается резкое изменение условий среды. Коеффициент понижения в среднем 1,0-1,5 км, прозрачность воды незначительна, температура в среднем 4-5 см/км, рН в августе 8,5. Среднемесячная температура воды в июне равна 21-22°. На этом участке преобладает в основном пелагическая, артифициальная и лимфофициальная микрокомплекс. Общая биомасса живых организмов незначительна, чем на предыдущем участке.

СИСТЕМАТИЧЕСКИЙ ОБЗОР РЫБ БАССЕЙНА РЕКИ ПРУД

Ихтиофауна бассейна р.Пруд представлена 54 видами, принадлежащими к 15 семействам: Petramyzoonidae — I вид, Acripeza-ridae — 2 вида, Salmonidae — 3 вида, Umbriidae — 1 вид, Esocidae — 1 вид, Cyprinidae — 27 видов и подвидов, Cobitidae — 4 вида и подвида, Siluridae — 1 вид, Gobidae — 1 вид, Percidae — 6 видов, Centrarchidae — 1 вид, Gobiidae — 2 вида, Ostrosteidae — 1 вид, Sygnathidae — 1 вид.

Руководствуясь постановлением совета по проблемам внутренних отношений организмов (Томок, 1962), мы дали ихтиологические таксоны в трофическом наименовании.

I. Семейство МОЛОЧКИ — PETRAMYZOONIDAE

1. Українська мина — Lampetra — Lampetra marina Berg*, 1931

Террасобразная: Днепр

Українська мина является эндемиком Черноморского бассейна. Прозрачность воды от 4 до 1,5 м. Воды от 0,5 м. Температура воды в среднем 7°. В весенний период водопой становится более прозрачным. В первом разделе водной фауны Пруда (Л.С.Берг, 1949), (В.Сергеев, 1952).

О наличии миног в водах Пруда и Черемоха указывает, что в работах И.Л.Яновича (1952), И.К.Кисель (1949), Л.С.Берга (1948-1949). Летом 1961 г. мы обнаружили 10 экземпляров, из которых 7 поймали на р.Черемох вблизи с.Старое Кутное на р.Прут недалеко от г.Коломы. Средняя длина их 12,5(12,5-18,5) см, средний вес 3,2 (1,0-10,2) г.

* Название видов даны на русском, молдавском языках и на латини.
На верхнечелюстной пластинке 2 зуба. Нижние зубы губа в несколько рядов, с каждой стороны по 3-4 боковых зубов губа (О.П. Маркович и Р. И. Коротков, 1954). Найбольшая масса тела у имённых экземпляров 5,5% от длины тела при колебании 4,4-8,8%. Длина головы составляет 19,5 (17,7-20,2) % от длины тела и антегородальное расстояние 49,3 (43,2-54,5%).

Видимо они были неполовозрельными, так как нам удалось определить кол только у экземпляра № 2586. Все указанные экземпляры были пойманы в старицах Прута и р. Черемош в мае. Рестировались многие из них до весны 17-18 см длины тела и откладывали влаку до весны. Из них все виды виско воспринимается незначительная (Л. С. Верг, 1948-1949). Очевидно они в Пруте очень малочисленны и придерживается в основном его горной части.

П. Семейство ОСЕДЛОВЫЕ - ACIPENSERIDAE

I. Шип-База - Acipenser nudiwenteria Lovatski, 1928

Terratypica: Арабское море

В Пруте очень редкая рыба и появляется спорадично, когда приходит из Дуная. Питается личинками насекомых, моллюсками и ракообразными. Используется во второй половине апреля (бр. Алентре, 1969), откладывает свои 0,1-1,3 яйца, прикармливает их на песчаном или мелкоокатенном дне, где плавают в быстротечении, в чистой и богатой кислородом воде. После зарезервирования стоков (Костянская ГЭС) прозрачность воды увеличивается и следует ожидал, что шип будет тут больше обычной ряби.

Борзыко М. И. (1950) указывает для вод Азербайджана подвид - Acipenser nudiwenteria dervjavi Bogrenko, 1950, который отличается от типичной формы более массивным телом и хвостом, меньшим диаметром глаза и большей величиной глазничного расстояния. Видимо, шип, обитающий в Дунайском бассейне отличается от типичного, но из-за недостаточности материала вопрос остается открытым.

2. Стразль-Чега - Acipenser ruthenus ruthenus L., 1758

Terratypica: Волга

Единственный представитель рода, который всю жизнь живет в пресной воде. В Друне стразль распространены от Дуная до с Кос...

tehtyi, на половую малочисленна. В годы с большими наводками ее численность увеличивается за счет тех экземпляров, которые приходят из Дуная. Например, в 1969 г. в озере Белое было добито 240 кг. стразлей. В самом русле ее добывают редко и в основном крючками.

Длина тела в среднем 50-60 см: в 41-49; A 22-27; спинных лучей 12-17, боковых - 58-70, брюшных - 12-18.

Стразль питается личинками поденок и хирономид, реже моллюсками. Нерестится в апреле и мае (Г. Варакач, 1964) на средних и мелкокаменном дне, на участках с прозрачной, богатой кислородом водой и с быстрым течением. Плодовитость в среднем 10-40 тягловинок.

В р. Прут имеются все необходимые условия для увеличения численности стразлей и доведения ее стада до промысловых размеров. Это будет возможно при проведении определенных мелиоративных работ и искусственном дозарыжиении реки озерами или озерах стразлей.

Ш. Семейство ЛОСОШЕЕ - SALMIDAE

I. Ручейная форель - Пострав де мунте - Salmo trutta fario L., 1758

Terratypica: Швеция

Длина тела (по спину = расстояние от переднего конца ряда до конца средних лучей хвостового плавника) 15-24,3 см; вес 102-241 г; P Ш-УН 9-11; P I 10-13; T I 7-9; A Ш-УН 9-11; L 105-130 чаш. Цвет зеленовато-оливковый с красными и черными пятнами. Ручейная форель является одной из самых полиморфных форм пресноводной рыбы (П. А. Дратья, 1972).

Форель резких рыб, живет неподвижно на галечном грунте и чистой водой. По отношению к температуре - степотермальная форма. Ручейная форель стенооконский, поэтому обитает только в верховых реках и его притоках. Питаются насекомыми и их личинками (поденки, ведячки, ручейники и др.). Большее значение в питании форели имеют также бокоплавы (И. Д. Бедорович, 1959). Реститятся они в конце-сентябре в специально вырытых гнездах в гальях. Через 3-4 месяца, в зависимости от температуры, вылупляются маленькие личинки, которые растут довольно быстро (Л. С. Верг, 1948-1949).
В горном участке р. Прут и его притоках ручьевая форель довольно обильная рыба, но всюду она оставляет малочисленной (Л. Д. Попа, 1962а).

2. Радужная форель - _Salmo gairdneri irideus Gibbons_, 1855

Terrataurica: Калифорния

Радужная форель является важным объектом холодно-водного прудового рыбоводства. В водоемах Карп и Прикарпатья (в прудовых хозяйствах "Расада" и "Шокино" Дрогобицкой области) радужная форель появилась в 80 годах XIX столетия (А. А. Протасов, 1949). Воронежский лесокомбинат в 1951 г. вывел несколько сот маток и несколько тысяч осеменок радужной форели из Этозин. Этим способлено начало форелеводческому прудовому хозяйству на берегу Прута недалеко от поселка Рыбного у села подъезда горы Говерлы. В 1962 г. в города там уже были стади, полученные от привезенных маток. Из этого хозяйства радужная форель попала в р. Прут.

3. Дунайский лосось - _Huchen hucho_ (L.), 1768

Terrataurica: Дунай

Дунайский лосось - это эндемик дунайского бассейна, чисто пресноводная рыба. Как и все лососевые, находит вершину участки горных рек, где течение очень быстрое, дно галечниково, вода холодная, прозрачная и богата кислородом. Мечет икру весной на галечниковых грунтах. Молодь питаются беспозвоночными, но уже в этом году живут переключают на рыбную пищу (И. И. Шищенич, И. И. Мошук, 1957). Растут они очень быстро. Масса их взрослой, нежное (Г. В. Никольский, 1971). В Пруту дунайские лососи редки.

В наших сборах имеется только один экземпляр, добытый в 1959 г. в реке Черемхов и представленный нам доктором Черногорского университета И. И. Шищеничем. Длина лосося 52 см, вес 2400 г.

**IV. Семейство УМЕРЕННЫЕ - _UMBRIDAE_

1. Умба - Цитрусовый обры - _Umbra kremeri Walbaum_, 1792

Terrataurica: Средний Дунай

Длина тела без C - расстояние от начала рыла до конца основания хвостового плавника - до 10 см; D III 12-14; A II 5-6; P I 10-13; v I 5-6. Боковая линия отсутствует. По бокам тела 30-36 рядов чешуй, верхнего чешуя 6-13. Рост мелкий. На чешуях мелкие зобки. Хвостовой плавник закругленный. На теле многочисленные темные плавники. На спинном плавнике плавники расположены в один ряд.

Эндемик Дунай и Дунай. Питаются различными беспозвоночными и их личинами. Нерестится в марте - апреле (Р. И. Ламб, 1964). Плодовитость 0,8-1,7 тис. яиц. Обитает только в нижних притоках. Очень редкая рыба.

**V. Семейство УМЕРЕННЫЕ - _UMBRIDAE_

1. Щука - Щука - _Esox lucius_ L., 1958

Terrataurica: Европа

Длина тела без C в среднем 40-50 см; вес 1500-2500 г; D VIII 15(13-16); P I(II) 13 (12-15); v I-IV 9 (8-12) и A III-V (УШ) 13 (10-15); 1,1. III 16 (10-125).

Отмечено антедоральное расстояние в среднем 73,52% от длины тела без C. Антедоральное расстояние 76,28% (73,2-75,3%). Постдоральное расстояние в среднем 13,63%. Расстояние между и P и V (26,28%) больше, чем между V и A (22,55%). Хвостовой плавник (14,59%) имеет почти равные лопасти. Верхняя лопасть в среднем 14,38%, нижняя - 14,60% от длины тела (Л. Д. Попа, 1966).

Щука Прут довольно висдомственные. Некоторая высота тела составляет в среднем 17,05%. По высоте и ширина р. Прут отличается от рек других водоемов СССР. Ласта в P у щуку из озера Шаман (А. И. Лерхан, 1949) - 14,25%, в черногорском водохранилище (В. А. Максимов, 1958) - 13,33%, в P. Прут - 15,26%, однако, длина P и V у прирусловом щуку меньше, чем у других водоемов. Для щуки P - 12,66% и v - 12,34%, для озера Шаман (А. И. Лерхан, 1949) P - 13,92%, v - 13,10%. И все же указанные различия довольно незначительны, что видимоль щуку р. Прут в отдельную самостоятельную популяцию, хотя и литературе имеются сведения о существовании в водах СССР четырех популяций щуки (А. И. Шербуха, 1974).

В бассейне Прута щука скорее является лимнологической формой, чем озерно-речной. В самом русле речен очень редка и туда, видимо-
мо, попадает случайно. Возможно, озерный образ жизни вносит свой отпечаток на ее конкретную морфологию, о чем она высказала.

В планктонных водоемах Пута количество самцов щук больше, чем самок, в отдельные годы соотношение доходит до 2:1.

Нерестится щука очень рано - февраль-март и откладывает в среднем 50-80 тыс. яиц на подводной растительности. Щука расселена очень быстро. Двухлетки имеют длину тела около 27 (6-29) см и весят в среднем 150 (130-220) г. Трехлетки длиной 30 (26-37) см и весом 275 (170-370) г. Четырехлетки соответственно 35 (30-40) см и 390 (240-680) г. Пятилетки - 45 см и 600 г. Шестилетки - 50 см и более 1 кг.

Щука в основном рыбьей: карасем, плотвой, краснорычкой, молодью сазана и др.

Известно, что в рыбном промысле Пута, щука составляет в среднем 20,6 (4,0-38,9)% интересно отметить, что после больших наводнений 1969-1970 гг. его численность в данном районе сильно сократилась. Увеличение наводнений сказали почти всю водную растительность (основной ее дютона) и потому его удельный вес в рыбном промысле в 1970 г. составлял 20%, в 1971 г. 15%, в 1972 г. 12%, в 1973 г. 4% и с главным растительностью в 1974 г. него удельный вес стал равен (6%). Видимо, через 3-4 года она снова восстановит свою численность.

В данных водоемах щука не особенно желательна рыба, т.к. она оказывает вместе с другими хищниками значительный пресс на мелкую промысловую рыбу (сазана, леща и др.). Следовательно, необязательно вести систематическую борьбу с водной растительностью и тем самым можно удерживать численность щуки в нужных нам рамках (Л.И. Попа, 1962).
В апреле — июне плотва откладывает до 100 тис. икринок на подводную растительность (Р. Баджев, 1964). К середине июля оголетки достигают в среднем 21,5 (10,7-33,3) мм, при весе 300,0-670,0 г, упитательность — 1,87 (1,36-2,00). Найбольшая высота тела 23,7 (19,6-25,8) % от длины тела без C.

В условиях Прута плотва растет довольно интенсивно, быстрее, чем в р. Днепре, где годовые достигают в длине 53 мм, двухгодовка — 92, трехгодовка — 119 и четырехгодовка — 161 мм (В. Н. Кожевников, 1927), а в р. Прут + 21,5, И + 18,4; 2 + 130,0; 3 + 155,0; 4 + 200,0 mm.

В Прутском эстуарии в популяции плотвы преобладают самки, в среднем 3:1. Видимо такое соотношение полов обеспечивает наименьшее колебание численности ее популяции и отмечается в меньшей зависимости от хищников и конкурентов. В волжских плотвах преобладает растительная пища, потому в самом русле и в руслах притоков Прута эта рыба редка, а обитает в основном в иллювиальных озерах, озерцах и береговых выступах Прута, где много растительности. Но кроме растительной пищи плотва питается и низкими рыбами, реже колюшками и другими животными.

Нагуливается плотва в низовых Прута очень редко. Например, контрольными обловами на оз. Белое в 1971 г., установлено, что в февральских иначе плотвы имел в среднем 15,8 (14-16) см длины и 34,0 (20-60) г веса при средней упитательности 0,87. В марте — 17,0 (14-20) см длины при весе в среднем 30,2 г, упитательность — 1,60. В апреле ее длина в среднем 18,1 (15-20) см, вес — 90,0 (69-110) г и упитательность 1,50. В мае соответственно — 18,0 (14-20) см, вес в среднем 80,0 г при упитательности — 1,38. Часто особей отмечено меньше в июне месяце длина ее тела без C в среднем 18,3 (15-21) см, вес — 140 (100-200) г и упитательность 2,28.

Средняя упитательность плотвы в прудах в июне 2,21 (0,87-3,90) %, что отмечено выше, колеблется по сезонам сильно, чем по возрастам.

В промышленных водоемах Прута плотву вынуждают неводами, верхней части, кошками. Но в ряжском промысле роль незначительна из-за малого размера. На рыболовы садятся вместе с мелкими частями, удельный вес которого в указанном районе составляет выше 50%. Примечательно, что в питании плотва является одним из конкурентов более ценных промысловых видов рыб (лещ, карась,

*+ — одно лето.
Морфометрические элементы головаля — Leuciscus cephalus cephalus, n = 50

<table>
<thead>
<tr>
<th>Признаки</th>
<th>Mтм</th>
<th>σ</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число разветвлённых лучей в D</td>
<td>8,42 ± 0,08</td>
<td>0,54</td>
<td>3-9</td>
</tr>
<tr>
<td>Число разветвлённых лучей в P</td>
<td>16,63 ± 0,18</td>
<td>1,25</td>
<td>11-18</td>
</tr>
<tr>
<td>Число разветвлённых лучей в V</td>
<td>8,02 ± 0,04</td>
<td>0,27</td>
<td>7-9</td>
</tr>
<tr>
<td>Число разветвлённых лучей в A</td>
<td>2,84 ± 0,05</td>
<td>0,36</td>
<td>2-3</td>
</tr>
<tr>
<td>Число разветвлённых лучей в A</td>
<td>8,66 ± 0,08</td>
<td>0,55</td>
<td>8-10</td>
</tr>
<tr>
<td>Число чешуи в боковой линии</td>
<td>44,24 ± 0,22</td>
<td>1,80</td>
<td>40-47</td>
</tr>
</tbody>
</table>

В процентах от длины тела

<table>
<thead>
<tr>
<th>Признаки</th>
<th>Mтм</th>
<th>σ</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Антедоральное расположение</td>
<td>54,30 ± 0,32</td>
<td>2,24</td>
<td>40-60</td>
</tr>
<tr>
<td>Антевентральное расположение</td>
<td>71,66 ± 0,42</td>
<td>2,95</td>
<td>64-76,9</td>
</tr>
<tr>
<td>Антевентральное расположение</td>
<td>60,01 ± 0,37</td>
<td>2,63</td>
<td>43-57,31</td>
</tr>
<tr>
<td>Постдоральное расположение</td>
<td>36,82 ± 0,35</td>
<td>2,44</td>
<td>30-51,42</td>
</tr>
<tr>
<td>Расстояние между P и V</td>
<td>26,22 ± 0,27</td>
<td>1,86</td>
<td>22-30,4</td>
</tr>
<tr>
<td>Расстояние между P и A</td>
<td>21,15 ± 2,1</td>
<td>1,47</td>
<td>16-27</td>
</tr>
<tr>
<td>Длина хвостового отклонения</td>
<td>21,66 ± 0,26</td>
<td>1,76</td>
<td>15-24,5</td>
</tr>
<tr>
<td>Длина хвостового плавника</td>
<td>19,67 ± 0,47</td>
<td>3,30</td>
<td>14-30,29</td>
</tr>
<tr>
<td>Наибольшая высота плавника</td>
<td>23,45 ± 0,34</td>
<td>2,36</td>
<td>15-31,6</td>
</tr>
<tr>
<td>Наименьшая высота плавника</td>
<td>10,04 ± 0,12</td>
<td>0,85</td>
<td>6,4-12,1</td>
</tr>
<tr>
<td>Наибольшая толщина плавника</td>
<td>14,88 ± 0,15</td>
<td>1,03</td>
<td>11-20</td>
</tr>
<tr>
<td>Длина основания D</td>
<td>10,76 ± 0,17</td>
<td>1,22</td>
<td>8,7-17,0</td>
</tr>
<tr>
<td>Наибольшая высота D</td>
<td>18,26 ± 0,20</td>
<td>1,40</td>
<td>15,8-22,4</td>
</tr>
<tr>
<td>Длина основания A</td>
<td>10,43 ± 0,17</td>
<td>1,17</td>
<td>6,5-13,8</td>
</tr>
<tr>
<td>Наименьшая высота A</td>
<td>15,62 ± 0,34</td>
<td>1,67</td>
<td>11,7-18,7</td>
</tr>
<tr>
<td>Длина P</td>
<td>17,25 ± 0,22</td>
<td>1,54</td>
<td>13,3-22,0</td>
</tr>
<tr>
<td>Длина V</td>
<td>14,33 ± 0,21</td>
<td>1,47</td>
<td>7,6-15,7</td>
</tr>
<tr>
<td>Длина головы</td>
<td>25,10 ± 0,36</td>
<td>2,54</td>
<td>21,1-31,4</td>
</tr>
</tbody>
</table>

В процентах от длины головы

<table>
<thead>
<tr>
<th>Признаки</th>
<th>Mтм</th>
<th>σ</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Преддопоральное расположение</td>
<td>26,35 ± 0,42</td>
<td>2,89</td>
<td>18,7-34,0</td>
</tr>
<tr>
<td>Диаметр глаз</td>
<td>24,16 ± 0,60</td>
<td>4,20</td>
<td>17,5-32,4</td>
</tr>
<tr>
<td>Заднеглазный отдел головы</td>
<td>50,82 ± 0,48</td>
<td>3,40</td>
<td>41-45,6</td>
</tr>
<tr>
<td>Медианоспальный сосед</td>
<td>51,80 ± 0,40</td>
<td>9,70</td>
<td>40-74,0</td>
</tr>
<tr>
<td>Высота головы у звякина</td>
<td>68,82 ± 0,86</td>
<td>6,00</td>
<td>60,0-82,0</td>
</tr>
</tbody>
</table>
Для определения поля и состояния полов продуктов были взятые 86 экземпляров. Из них были 38 самцов и 47 самок. Поло-
вой диморфизм выражен слабо. Незначительные отличия можно наблюдать по числу неразветвленных лучей в D, где M. diff.
равняется 3,15, по антердомальном расположении (2,46), по
домальном расположению (3,02) и по длине хвостового стебля (2,50).

У самцов длина рыла (25,50%) от длины головы) меньше, чем у
самок (27,54%). Глаза у самцов больше, чем у самок. У самок
высота головы у затылка составляет 69,37% от длины головы, у
самцов - 62,22%. По остальным признакам (меристическим и пластиче-
ским) отличия незначительны.

Семянки (длина тела в среднем - 16,25 см и вес - 113,0 г)
чуть крупнее самцов, в последних длина тела в среднем равна
14,1 см и вес 87,6 г. Самцы более упитаны - 1,91 (1,40-3,02) см
самки - 1,62 (1,28-2,28).

Разница по корреляционным признакам между взрослыми и се-
gолетками гораздо заметнее, чем между самцами и самками. Например,
количество разветвлённых лучей в D у сеголеток меньше
(8,15) чем у взрослых (6,61). То же относится к количеству
лучей в Р, V и A.

Антердомальное, антевентральное и антевентральное расположение
у сеголеток чуть больше, чем у взрослых. Зато сеголеток Р и V
и A у них меньше. Взрослые имеют высоту тела в среднем
24,40 см от длины тела, а сеголетки - 20,06. Хвостовой плавник у
сеголеток длиннее (23,24%) чем у взрослых (18,82%). То же на-
слаждается и в отношении высоты D и A, длина P, и только V у се-
gолеток короче (12,86%), чем у взрослых (14,36%). У сеголеток
по сравнению с взрослыми голова больше. Диаметр головы и меж-
глазничные расстояния тоже больше, ради коротки, а высота головы
меньше. Разница и упитанность - у сеголеток она равна 1,50(0,93-
I,82), тогда как у взрослых в среднем 1,76(1,28-3,02) (Л.Л.По-
пя, 1964).

В условиях Прута гольвей питается в основном вымирающими
растениями. Частота встречаемости последних - 72,0%; частота встре-
чаемости нитчатых водорослей - 52,0; личинок насекомых - 20,3;
диатомовых, ручейников, низших ракообразных, вазовых нежных и
малых - 16,0; коловраток, мелких червей, выскых рако-
образных и червей - 8,0.

Индекс наполнения желудка, по Зенкевичу, в среднем равен
15,92(4,2-995%).

Р и а. 3. Кривая длины тела головы

Упитанность в среднем равняется 1,68(0,93-3,02). Упитанность
взрослых головей, встречающихся в горных учащихся реки, составляет
1,65, в предгорном участке - 1,72 и в равнинном - 1,69. У
сеголеток наблюдается противоположное явление. Самые упитанные
сеголетки были пойманы в устьевой части Прута. Здесь их упитанность
была равна 1,72, в равнинном участке - 1,60 и в предгор-
ном участке составила лишь 1,10.

Для определения возраста и темпа роста были обработаны че-
шуи от 50 экземпляров рыб. У каждой возрастной группы определя-
ли длину тела, вес и упитанность. В этот год возраст голов-
ней достигает в длину 15,1 (11,5-17,5) см, весу 54,0 (27,0-95,0) г,
на третем - 20,5 (18,5-23,0) см в длину и весу 136 (97,0-170,0) г.
На четвертом году жизни темп роста еще ниже: прирост в длине
составляет 2,1 см, а в весе - 49,5 г. На пятом году жизни голов-
ней достигают 24-25 см в длину и 240-300 г веса (табл.3). Упитан-
ность у разных возрастных групп различна. Например, у сеголеток
она равна 1,50, у двухлеток 1,77 (1,5-2,15), у трехлеток оль
онежена и равняется 1,52 (1,45-1,79) (табл.3). Видно, это свя-
зано с наступлением половой зрелости и с наростом. Упитанность
у четырехлеток возрастает незначительно (1,58), зато у пятилеток
она достигает 1,74.

Возрастной состав остальных головей определялся графиче-
ским способом (рис.3). Установлено, что 40,4% составляют дву-
летки; 22,8 - трехлетки; 17,1 - четырехлетки; 7,8 - пятилетки;
4,6 - шестилетки; 3,5 - семилетки; девятилетки и десятилетки вмес-
те взятые; составляют 3,5%.}

22

23
<table>
<thead>
<tr>
<th>Возраст</th>
<th>Кол-во экз.</th>
<th>Длина, см</th>
<th>Вес, г</th>
<th>Упитанность</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>средний</td>
<td>пределы колебания</td>
<td>средний</td>
<td>пределы колебания</td>
</tr>
<tr>
<td>+</td>
<td>86</td>
<td>1,73</td>
<td>1,0-4,7</td>
<td>0,14</td>
</tr>
<tr>
<td>I+</td>
<td>12</td>
<td>15,1</td>
<td>I,5-7,5</td>
<td>64,0</td>
</tr>
<tr>
<td>2+</td>
<td>26</td>
<td>20,5</td>
<td>18,5-23,0</td>
<td>136,0</td>
</tr>
<tr>
<td>3+</td>
<td>11</td>
<td>22,6</td>
<td>20,5-25,0</td>
<td>186,0</td>
</tr>
<tr>
<td>4+</td>
<td>1</td>
<td>24,0</td>
<td>24,0</td>
<td>240,0</td>
</tr>
</tbody>
</table>

В водах Дунайского бассейна голавль верится в апреле - мае. В Буковине голавль откладывает 100-160 тис. икринок в первой декаде мая (Н.Д. Шнепович, 1969). В первые 2-2,5 месяца сеголетки голавли достигают уже 11,3 см длиной и веса 16,3 г (II,0-20,0 г). В этот период они очень худые, их упитанность равна I3 (I,03-I,16). В августе их длина увеличивается до 17,0 см (8,0-47,0 см) и вес до 146,0 г (7,0-192,0 г). В этот период и упитанность уже большая (1,50). В начале сентября сеголетки голавли достигают 23,9 см (6,5-28,8 см) и вес до 135,0 г (174,0-400,0 г). Упитанность равна I,72 (табл. 4).

Типичные мелкие головы насекомых Diptera, Polyphemidae, Ephemerida, найдены также и фрагменты икры Coleoptera, влажностного и строительства и детрит. Планктонных организмов мало, так как сам Прут планктоном очень беден (В.Л. Гриимальский, 1970).

Распространение голавля в основном в грунтово, предгорном и равнинном участках реки. Например, из 279 пойменных и каскадных экземпляров 48 был заложен в грунтовом участке, 97 - в предгорном и 126 - в равнинном. В устьевом участке пойменного всего 8 экземпляров. Длина и вес тела голавлей, пойменных на разных участках реки, различны. Самые крупные голавли обитают в предгорном участке.

По дальнему весу в уловах головное отрост на 4-ом месте (контрольные уловы). На Буковине голавль является основным производным видом и составляет 40-50% от общего количества вылавливаемого рыбы (Н.Д. Шнепович, 1959, Л.Л. Нечаева, 1964а).

3. Язык - Вадуце - Leuciscus idus idus (L), 1758

Таблица 3 Длина, вес и упитанность голавля

<table>
<thead>
<tr>
<th>Участок реки</th>
<th>Кол-во экз.</th>
<th>Длина, см</th>
<th>Вес, г</th>
<th>Упитанность</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>средний</td>
<td>пределы колебания</td>
<td>средний</td>
<td>пределы колебания</td>
</tr>
<tr>
<td>Предгорный</td>
<td>3</td>
<td>11,3</td>
<td>10,0-12,0</td>
<td>16,3</td>
</tr>
<tr>
<td>Равнинный</td>
<td>76</td>
<td>17,0</td>
<td>8,7-47,0</td>
<td>146,0</td>
</tr>
<tr>
<td>Устьевой</td>
<td>7</td>
<td>23,9</td>
<td>6,5-28,8</td>
<td>195,0</td>
</tr>
<tr>
<td>Итого</td>
<td>86</td>
<td>17,35</td>
<td>10,0-47,0</td>
<td>143,3</td>
</tr>
</tbody>
</table>

3. Язык - Вадуце - Leuciscus idus idus (L), 1758
Питаются червями, личинками и взрослыми насекомыми, ракообразными, моллюсками и др. животными.
Длина головок в среднем 13,5 см, вес 37 г, двуголовья - 20 см, вес - 130 г. После трех лет длина их в среднем 25,0 см и вес 320,0 г. После четвертого года - 30 см, 530 г, после пяты - 33 см, 700 г, после шестого - 37 см, 1000 г, после седьмого - 39 см, 1200 г, после восьмого - 42 см, 1500 г.
Упитанность в условиях Прута довольно высока и составляет в среднем 2,12 (1,82-2,34).
Роль яйц в рыбной промысле незначительна, так как в уловах он появляется спорадично. В притоках плавня его удельный вес в уловах в среднем за 25 лет - 0,16 (0,1-0,47).
В нем думается, что это он приспособлен на основе Каспийского рыбокомнатного занимается искусственным разведением и выращивание яиц совместно с растительными водами. Тем более, что темп роста его хорош, он не приблизился к кирилловскому режиму и пита- нию, а мясо его высоко ценится.

4. Гольян - Boesia - Phoxinus phoxinus (I.), 1758

Тематически: Европа
Длина тела в среднем 5,65 (3,7-10,1) см, вес 4,06 (0,8 - 19,5). В III-IV 7-8 (6-9); P/I 4-16 (13-16); V-I-IV 7-8 (6-9); A IV-III 7-8 (6-10). Глоточные зубы 2,4:4,2; 2,5-4,2; (2,5-5,2), жаберные тяжущие 7-10.
Отдельные гофмофритомические признаки таковы: голова составляет в среднем 22,40 (19,0-25,6)% от длины тела. Расстояние р-п (2,4-82,0) чуть меньше хвостового стебля (26,42%). Наибольшая длина тела составляет в среднем 21,01% от длины тела, основания I и A почти равны, их высота также мало отличается. Рыло несколько 27,96% от длины головы, глаза маленькие и составляют в среднем 22,28% от длины головы (Л.Л.Попа, 1972).
Из 50 вскрытых головок - 15 самцов и 35 самок. Самцы по размерам меньше самок, их длина в среднем 5,56 (3,9-8,47) см, вес 2,75 (1,0-10,95) г. Длина самок 6,68 (4,1-10,1) мм, вес 4,45 (1,0-19,5) г. Отличаются они по упитанности. Самки более упитанные (1,69) чем самцы (1,42). Видимо это влияет количество яиц, находящихся в теле самок, так как самки со зрелой яйкой найдены с мая по август месяцы. Значит их нерест растянут в икрометание порционное. Откладывают они до 1000 яиц на каменистом грунте в течении, прозрачной воде (Р. Ванагевок, 1964).
Гольян обитает только в верхнем участке Прута. Живут они стаями и придерживаются в основном середины реки с каменистым или крупногальваническим дном.
Гольян в Пруте питаются насекомыми (духами), жуки и их личинками (тенидипеди, ручейников, поденки, стрекозы), а также червями, в основном олигохетами, земноводными и лиственными рачками, коловратками, водяными растениями и водяными.
Индекс наполнения кишечника по Зелковичу, в среднем 158,8 (34,7-1207,7). Упитанность в среднем I,60 (0,91-2,69).
В нижних оброках преобладают двухлетки - 27,2%, оставленные трехлетки и четырехлетки. У двухлеток длина тела в среднем 5,0 см.
Гольян - молодая рыба, местами ее используют местные жители для приготовления ухи. Незначительную роль играет в пище водяного дунайского лосося, ручейной форели и голавля.

5. Краснолицая - Ронкора - Sardina erythrophthalmus erythrophthalmus (I.), 1758

Тематически: Северная Европа
Длина тела в среднем 13,05 (2,7-30,0) см, вес 63,5 (4,2-581,2). Для гофмофритомической характеристики обработан 96 экз. У остальных после определения измерили длину тела, вес и наибольшую высоту тела.

Д имеет в среднем 2,65 (1-13) неразветвлённых и 8,5 (8-10) разветвлённых лучей, удлиненный грудной плавник всегда имеет I неразветвленный луч и 14,4 (11-17) разветвлённых лучей. Брюшной плавник характеризуется I,56 (I-1) неразветвленными лучами и 7,94 (7-8) разветвлёнными лучами. Антенный плавник имеет в среднем 2,48 (2-3) неразветвленных лучей и 12,4 (10-15) разветвлённых лучей. Вольная линия спини и насищает в среднем 42,4 (40С-9-46).

Жаберных тяжущих на первой жаберной дуге снаружи в среднем 10,8 (10-15), с внутренней стороны - 15,6 тяжущих; на второй тяжущих - 15,6, а с внутренней - 15,4; на третьей соответственно - 15,3 и 14,6; на четвертой - 12,8 и 10,0. Глоточные зубы в основном 3,5: 3,5, очень редко 2,5:5,2. Количество позвонков в среднем 36,8 (36-39). С у (У) 16-18 у (У) (Л.Л.Попа, М.С.Божек, 1971).

Для определения пола и состояния половых продуктов были вскрыты 95 красноногов. Состояние самцов и самок 1:2. Половой диморфизм у красноногов почти не заметен. Длина тела у самцов в среднем 13,12 (8,9–16,0) см, вес 55,0 (30,0–92,0) г. У самок длина 13,62 (9,6–30,0) см, вес 69,0 (18,0–68,1) г. По пластическим признакам их трудно отличить, где самцы почти для всех признаков больше (табл.5).

Заметные отличия видны только по длине хвостового плавника. У самок он длиннее (25,91\%), чем у самцов (22,81\%). У самок грудные плавники чуть длинее (19,70\%), чем у самок (18,22\%), зато брюшные пловники у самцов короче (17,90\%), чем у самок (19,27\%). Не значительное отличие наблюдается в упитанности — у самцов оно составляет 2,42 (1,82–4,29), у самок - 2,28–3,17.

Питается красноноги высшими растениями, водорослями, личинками насекомых и червями, любят личинок бражковых колюшков. В условиях Пугта, видимо, корм для нее есть в достаточном количестве, о чем свидетельствует их упитанность — в среднем 2,33 (1,66–4,29). Нерестится красноноги в апреле — мае, когда откладывает по 60–150 тыс. яиц, которые прикрепляются к подводным растениям. Мы предполагаем, что края откладываются двумя порциями, как диаметр в яйцах в начале мая колеблется от 0,3 до 1,1. Из них одна группа имеет 0,9 (0,7–1,1) мм в диаметре, другая — 0,5 (0,3–0,7) мм, коэффициент зрелости в это время — 20 (Л.Л. Попа, А.С. Смирнова, 1968).

В наших сборах преобладают двухлетки и трехлетки, из 25 красноногов I2 оказались двухлетки и I3 — трехлетки. Средняя длина двухлеток 11,0 (11,0–13,0) см, вес 42,1 (30,0–53,0) г, трехлеток длина 13,22 (12,0–15,5) см, вес 54,2 (38,0–70,0) г. По упитанности они мало чем отличаются — у двухлеток упитанность равна 2,28 (2,14–2,45), у трехлеток — 2,24 (1,78–2,75).

<table>
<thead>
<tr>
<th>Признаки</th>
<th>Самицы, n = 31</th>
<th></th>
<th>Самики, n = 64</th>
<th></th>
<th>М. diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M±m</td>
<td></td>
<td>M±m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Антендозальное расстояние</td>
<td>57,19±0,52</td>
<td>2,88</td>
<td>57,03±0,34</td>
<td>2,70</td>
<td>0,18</td>
</tr>
<tr>
<td>Антевентриальное расстояние</td>
<td>70,07±0,53</td>
<td>2,96</td>
<td>71,34±0,37</td>
<td>2,95</td>
<td>1,98</td>
</tr>
<tr>
<td>Антевентриальное расстояние</td>
<td>47,63±0,48</td>
<td>2,68</td>
<td>48,94±0,19</td>
<td>1,54</td>
<td>2,57</td>
</tr>
<tr>
<td>Постдорсальное расстояние</td>
<td>32,04±0,33</td>
<td>1,85</td>
<td>33,17±0,33</td>
<td>2,62</td>
<td>2,42</td>
</tr>
<tr>
<td>Расстояние между P и V</td>
<td>24,69±0,21</td>
<td>1,55</td>
<td>24,79±0,24</td>
<td>1,92</td>
<td>0,33</td>
</tr>
<tr>
<td>Расстояние между V и A</td>
<td>18,44±0,23</td>
<td>1,33</td>
<td>24,62±0,16</td>
<td>1,32</td>
<td>1,32</td>
</tr>
<tr>
<td>Длина хвостового стебля</td>
<td>22,81±0,39</td>
<td>1,30</td>
<td>18,05±0,21</td>
<td>1,65</td>
<td>0,37</td>
</tr>
<tr>
<td>Длина хвостового плавника</td>
<td>22,81±0,39</td>
<td>2,18</td>
<td>25,91±0,29</td>
<td>2,36</td>
<td>6,45</td>
</tr>
<tr>
<td>Верхняя C</td>
<td>21,99±0,26</td>
<td>1,46</td>
<td>21,50±0,20</td>
<td>1,57</td>
<td>1,49</td>
</tr>
<tr>
<td>Нижняя C</td>
<td>24,34±0,36</td>
<td>2,02</td>
<td>23,05±0,30</td>
<td>2,39</td>
<td>1,79</td>
</tr>
<tr>
<td>Наибольший вес тела</td>
<td>33,97±0,27</td>
<td>1,44</td>
<td>34,01±0,25</td>
<td>1,99</td>
<td>0,36</td>
</tr>
<tr>
<td>Наименьшая высота тела</td>
<td>10,47±0,14</td>
<td>0,76</td>
<td>10,62±0,15</td>
<td>1,23</td>
<td>0,75</td>
</tr>
<tr>
<td>Найбольшая толщина</td>
<td>14,06±0,23</td>
<td>1,29</td>
<td>14,04±0,17</td>
<td>1,65</td>
<td>0,07</td>
</tr>
<tr>
<td>Основание D</td>
<td>13,39±0,32</td>
<td>1,73</td>
<td>12,72±0,21</td>
<td>1,39</td>
<td>1,81</td>
</tr>
<tr>
<td>Высота D</td>
<td>22,40±0,35</td>
<td>1,95</td>
<td>21,63±0,19</td>
<td>1,53</td>
<td>2,03</td>
</tr>
<tr>
<td>Основание A</td>
<td>14,52±0,32</td>
<td>1,78</td>
<td>14,30±0,29</td>
<td>2,29</td>
<td>0,48</td>
</tr>
<tr>
<td>Высота A</td>
<td>17,54±0,18</td>
<td>0,99</td>
<td>16,88±0,21</td>
<td>1,72</td>
<td>2,46</td>
</tr>
<tr>
<td>Длина P</td>
<td>19,70±0,26</td>
<td>1,46</td>
<td>18,22±0,19</td>
<td>1,52</td>
<td>4,60</td>
</tr>
<tr>
<td>Длина V</td>
<td>17,90±0,21</td>
<td>1,15</td>
<td>19,27±0,11</td>
<td>0,90</td>
<td>5,80</td>
</tr>
<tr>
<td>Длина головы</td>
<td>23,59±0,53</td>
<td>1,66</td>
<td>23,20±0,20</td>
<td>1,61</td>
<td>1,09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>В процентах от длины тела</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина рыла</td>
<td>25,86±0,53</td>
<td>2,93</td>
<td>24,48±0,36</td>
<td>2,90</td>
<td>2,16</td>
</tr>
<tr>
<td>Диаметр глаза</td>
<td>23,35±0,51</td>
<td>2,86</td>
<td>25,10±0,32</td>
<td>2,57</td>
<td>0,42</td>
</tr>
<tr>
<td>Заглазничный отдель</td>
<td>49,67±0,60</td>
<td>3,34</td>
<td>50,39±0,32</td>
<td>2,53</td>
<td>1,06</td>
</tr>
</tbody>
</table>

28
Промысловое значение красноперки невелико, добавляется в основном в каткульских плавнах, в ос. Бела и одался на рыбных запас. Вместе с карасем, плотвой и другими малыми рыбами, как мелочь первой группы, откуда идет на засол, а иногда и на коченчное. В какой то мере она служит пищей для щуки, судака и осмин.

6. Жерех — Неут — Аргун аргуны аргуна (L.), 1758

Таблица 6

<table>
<thead>
<tr>
<th>Возраст</th>
<th>Кол-во экз.</th>
<th>Длина тела, см</th>
<th>Вес, г</th>
<th>Упитанность</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>32</td>
<td>2,06</td>
<td>0,15</td>
<td>0,90 - 1,70</td>
</tr>
<tr>
<td>1+</td>
<td>5</td>
<td>16,30</td>
<td>68,5</td>
<td>34,1 - 1,70</td>
</tr>
<tr>
<td>2+</td>
<td>6</td>
<td>25,00</td>
<td>215,0</td>
<td>1,00 - 2,10</td>
</tr>
<tr>
<td>3+</td>
<td>16</td>
<td>35,30</td>
<td>614,0</td>
<td>1,20 - 2,40</td>
</tr>
<tr>
<td>4+</td>
<td>10</td>
<td>40,00</td>
<td>666,0</td>
<td>1,20 - 2,10</td>
</tr>
<tr>
<td>5+</td>
<td>7</td>
<td>46,00</td>
<td>1460,0</td>
<td>1,20 - 2,10</td>
</tr>
<tr>
<td>6+</td>
<td>8</td>
<td>47,30</td>
<td>1440,0</td>
<td>1,20 - 2,10</td>
</tr>
</tbody>
</table>

К среднему имея наилучшее значение тела у мальков достигает в среднем 21,0 (20,0-22,0)% от длины тела, почти как и у взрослых — 21,9 (20,2-23,0)%.

Питается жерех в условиях Прута в основном кукуей, которая в Пруте довольно многочисленна. Будучи хищником, питается и другими рыбами — головами, подкуями, пещарками, молюсками и даже меланивами.

Распространен жерех почти повсеместно, начиная от г. Черновцы до самого устья Прута. Живет он по одиночке, но его количество на разных участках Прута разное. В предгорных участках он малочислен, а по мере приближения к устью количество его возрастает. Жерехи, попадающие в разных участках реки, отличаются по размерам. Больше жерехи встречаются в предгорных и устьевых участках реки, маленькие — на равнинном участке (L.L. Попа, 1966). В Пруте по количеству жерех занимает третье место и составляет 12% от количества промысловых рыб Прута. По удельному весу в контрольных обловах он занимает 14,8% от остальных промысловых рыб, пойманных нами.

Принимал во внимание, что кроме жереха (12%) в Пруте очень много осма (60,7%), количество которых хищников необходимо сократить, что будет способствовать увеличению стада мирных рыб (сазан, лещ, голавль, рыбец, усач, поду и др.) (L.L. Попа, 1970).
7. Верховка - Сорян - Leucaspis delineatus delineatus L., 1843

Terra typica: Швеция
Длина в среднем 4,52 (3,9–4,9) см, вес 1,72 (1,1–2,1) г.
Хвост составляет 17,8 (14,4–18,5)% от длины тела. Наименьшая высота тела равняется 21,7 (20,6–22,4)% от длины тела. Промыслово-вого значения не имеет. Скорее всего это сорная рыба, но в Пруте она очень редка.

8. Лини - Лин - Tinca tinca (L.), 1758

Terra typica: Центральная Европа
Длина тела 22,8 (10,6–36,5) см, весит в среднем 294,6 (46,0–890,0) г. Меристометрические признаки линя следующие: D II-IV 8–9 (7); P I 15–18; V II 8–9; A III 6–8. Боковая линия насчитывает в среднем 103,4 (9 4–120) чешуи. Глоточные зубы однорядные: 4:5, 4:4, 5:5 (3:5, 2:5). Медиана тычинок на первой жаберной дуге в среднем 12,6 (11–14). Чешуя большие пластинки прижимаются, так как средняя квадратное отношение не превышает 2,0. Большое значение указывает только в пределах северных и южных годовалых узелек, и то не выше 3.

В основном линь характеризуется тем, что антедорсальное расположение (56,83%) чуть больше антевентрального (51,46%). Расстояние P и V почти равно расстоянию V–A. Хвост короткий и составляет в среднем 18,3 б (16,2–21,6)% от длины тела. Тело удлинено, составляет почти 1/3 длины тела (31,1%). Основание D (14,97%) двуязычное основание A (9,93%). Спинной плавник (23,94%) и по высоте больше анального (19,96%). Грудные и брюшные плавники почти равны; первый состоит в среднем 18,5 (16,4–21,3)% от длины тела. В желтое резко, растягивает 27,09 (25,0–28,7)% от длины тела. Плавниковая длина составляет почти 1/3 длины тела. Матричный ряб в среднем 19,9 (16,5–21,7)% от длины тела. Голова довольно большая, равняется 27,09 (25,0–28,7)% от длины тела. Промысловое расстояние составляет почти 1/3 длины тела. Глаза маленькие, равняются 17,73 (14,6–20,6)% от длины головы. Голова толстая и высокая (81,7%). Межглоточное расстояние составляет 42,00 (29,4–44,2)% от длины тела (Л. Д. Попа, 1970а).

Линь в основном осеньняя форма. Есть в прудах слоях водосемов. Малоподвижен. Питается растениями, моллюсками, насекомыми, ракообразными, червями и др. Довольно неприхотлив к количеству кислорода.

9. Подуст обыкновенный - Скобер - Chondrostoma nasus (L.), 1758

Terra typica: Европа
Средняя длина подуста в условиях Прута - 21,3 (7,5–37,0) см, вес 155,5 (6,2–550,0) г. D III (IV) 9,5 (6–11); P I 14,35 (15–16); A III (IV) 10,7 (10–12). Формула 6 IX (X–X) 7 (8–11) 66 чешуи.

Антеннальное расположение (50,4%) во всех случаях меньше, чем аррессальное и атралььное (72,23%). Поясной признак менее постоянный, его среднее квадратичное отношение равно 3,42. Большие колебания наблюдаются по отношению к антевентральному расположению (e = 3,16). Всестороннее расстояние более постоянное и среднее составляет 38,24 (34,8–41,9)% от длины тела. Расстояние между P и V в среднем 4,9 (3,4–6,6)% от длины тела, высоту тела, напря CONST, основание P, основание V, основание A, высоту A, длина P и длина V также относительно постоянны, их среднее квадратичное отношение не превышает 1,53 (табл. 7). Такие признаки, как длина хвостового конца и его хвоста, длина головы в % от длины тела, пределы расположения, диаметр глаза, затылочный отдел головы, межглоточное расстояние, высота головы у затылка в % от длины головы и длина P в % от расположения между P и V имеет большие амплитуды колебаний. У некоторых из названных признаков среднее квадратичное отклонение
Таблица 7
Пластические признаки подуста обыкновенного, n = 50

<table>
<thead>
<tr>
<th>Признаки</th>
<th>М±t</th>
<th>e</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела без C</td>
<td>21,3</td>
<td>-</td>
<td>7,5 - 37,0</td>
</tr>
<tr>
<td>В процентах от длины тела</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Антедоральное расположение</td>
<td>50,4±0,33</td>
<td>2,31</td>
<td>46,6 - 56,7</td>
</tr>
<tr>
<td>Антеннаиловое расположение</td>
<td>72,3±0,48</td>
<td>3,42</td>
<td>67,5 - 82,9</td>
</tr>
<tr>
<td>Антевентральное расположение</td>
<td>52,8±0,45</td>
<td>3,16</td>
<td>48,0 - 53,0</td>
</tr>
<tr>
<td>Постдохальное расположение</td>
<td>29,5±0,26</td>
<td>1,76</td>
<td>25,8 - 32,1</td>
</tr>
<tr>
<td>Расстояние между P и V</td>
<td>29,0±0,21</td>
<td>1,51</td>
<td>24,0 - 31,7</td>
</tr>
<tr>
<td>Расстояние между V и A</td>
<td>20,6±0,22</td>
<td>1,53</td>
<td>17,7 - 23,6</td>
</tr>
<tr>
<td>Длина хвостового стебля</td>
<td>21,0±0,20</td>
<td>1,42</td>
<td>18,5 - 21,4</td>
</tr>
<tr>
<td>Длина хвостового плавника</td>
<td>21,3±0,43</td>
<td>3,03</td>
<td>18,3 - 27,3</td>
</tr>
<tr>
<td>Длина верхней лопасти C</td>
<td>21,6±0,39</td>
<td>2,74</td>
<td>18,6 - 27,6</td>
</tr>
<tr>
<td>Длина нижней лопасти C</td>
<td>21,7±0,42</td>
<td>2,96</td>
<td>17,7 - 28,1</td>
</tr>
<tr>
<td>Найбольшая высота тела</td>
<td>9,9±0,07</td>
<td>0,53</td>
<td>8,7 - 11,1</td>
</tr>
<tr>
<td>Найменьшая высота тела</td>
<td>12,8±0,29</td>
<td>2,01</td>
<td>10,5 - 17,4</td>
</tr>
<tr>
<td>Длина основания P</td>
<td>12,0±0,11</td>
<td>0,75</td>
<td>10,5 - 13,3</td>
</tr>
<tr>
<td>Найбольшая высота D</td>
<td>19,5±0,20</td>
<td>1,44</td>
<td>16,8 - 22,7</td>
</tr>
<tr>
<td>Длина основания A</td>
<td>11,5±0,12</td>
<td>0,88</td>
<td>9,4 - 13,2</td>
</tr>
<tr>
<td>Найбольшая высота A</td>
<td>15,2±0,15</td>
<td>1,11</td>
<td>13,2 - 15,2</td>
</tr>
<tr>
<td>Длина P</td>
<td>16,4±0,18</td>
<td>1,24</td>
<td>13,9 - 20,0</td>
</tr>
<tr>
<td>Длина V</td>
<td>14,3±0,13</td>
<td>0,89</td>
<td>12,1 - 15,8</td>
</tr>
<tr>
<td>Длина головы</td>
<td>21,6±0,38</td>
<td>2,88</td>
<td>18,3 - 39,0</td>
</tr>
</tbody>
</table>

В процентах от длины головы

Предглазничное расположение	29,4±0,59	4,13	21,0 - 35,6
Диаметр глаза	24,3±0,61	4,31	17,9 - 31,5
Затылочный отрез головы	46,3±0,48	3,35	39,8 - 52,0
Межглазничное расположение	50,0±2,00	1,42	37,4 - 66,0
Высота головы у затылка	70,5±1,20	8,53	50,6 - 84,4

В процентах от P - V

| Длина P | 56,5±0,75 | 4,38 | 48,0 - 70,0 |

Рис. 4. Кривая длины тела подуста
ниже и равен 0,7. Встречается он в основном в предгорном участ-ке Прутча, где составляет 7,2% от остальных промысловых рыб данного участка. В устьевом участке он полностью отсутствует.

10. Пескарь обыкновенный - Gobio gobio (L.), 1758

Территориальность: Англия

Длина тела 7-12 см в возрасте 6-25 г; д VII 7-8; P.III5,3 (13-17); V I-II 7 и VII 6 (7); I, 11, 42 (36-44) черепий. Количество жаберных щипков в среднем 3,7 (2-5). Глоточные зубы 2,5; 5,2; 3,5; 5,3. Тело удлиненное. Наибольшая высота тела составляет в среднем 20,65% его длины. Хвостовой отсек короткий (21,7%) и у основания сидит с боков. Толщина хвостового отсека у начала основания A составляет 9,06 (6,9-10,4) длины тела и равна или чуть больше его высоты. Наименьшая высота тела укладывается в длине хвостового отсека в 2,15-2,69 раза. Голова и грудь голые, сбрызгнутые плавники не достигают анального плавника и закрывают хвостовой отсек, сосредоточен 21,7% (19,3-24,4) длины тела без C (табл. 8).

Аналное отверстие расположено ближе к анальному плавнику, чем к основанию брюха. Расстояние от B до ампула в среднем 12,64% длины тела, а от ампула до A только 7,57%. Это отличает в условиях Прута основным отличительным признаком между Gobio gobio, Gobio kealari и Gobio olivarius, у последних анальное отверстие расположено на середине между A и более к B.

В р. Прут Gobio gobio обнаружен два подвида: Gobio gobio carpaticus и Gobio gobio sarmaticus, что указывают И.И. Шарабин (1959) и Л.Л. Попа (1965). Однако этот вопрос до сих пор оставаться открытым. В действительности в бассейне Прута карпатский пескарь разделяется до отдельных видов в P имеет в среднем 14,9 (13-17), карпатский пескарь - в среднем 16,5 (14-16). Количество неразветвленных лучей в B у первого в среднем 1,3 (1-4), у второго 1,96 (1-11), a M. diff. равно 4,71. Разветвленных лучей в B у карпатского песка 6,9 (6-7), у сарматского - 7,12 (6-8).

Высота хвостового отсека у карпатского песка укладывается в его длине в среднем 2,3 раза, а у сарматского - в среднем 2,5 раза. Диаметр глаза составляет 35-71% от межглазничного пространства у сарматского (71-87%).

У карпатского песка рыло короткое и составляет в среднем 41,0 (37,8-43,8) % от длины головы. Длина основания D укладывается в его высоте в среднем в I,6-1,7 раза, а длина основания D в среднем в I,3-2,0 раза.

Длина R укладывается в среднем в P в 1,4-1,5 раза. У сарматского песка в среднем в I,2-1,4 раза. Толщина хвостового отсека у основания A составляет 9,7 (9,0-10,4) % длины тела у сарматского песка - 8,43 (6,9-9,6) %.

Из отличительных признаков между карпатским и сарматским пескарами можно назвать еще и следующие: хвостовой плавник короткий (17,3%) у сарматского песка (18,6%), а у карпатского (4,4%). В обеих плавниках, кроме сбитых, у карпатского песка короче, чем у сарматского. Это, видимо, объясняется тем, что первый чаще встречается в предгорном участке реки, второй - в горном, где течение быстрее. Наименьшая высота тела у сарматского песка укладывается в длине хвостового отсека в среднем в 2,52 (2,3-2,5) раза. Длина хвостового отсека в среднем 22,12 (19,3-24,4) % длины тела (по Бурю 23-24%). Диаметр глаза составляет в среднем 22,05 (18,0-26,0) % длины тела укладывается в 4,0-5,6 раза в длине головы у сарматского песка (26,3-29,7) % и доходит лишь до вертикали середины глаза. Расстояние между P и V меньше 24,84% длины головы у сарматского песка, чем у карпатского (26,1%). По высоте тела сарматский пескарь (19,84%) уступает карпатскому (21,4%) длины тела. Глаза часто большие у сарматского песка (22,06), чем у карпатского (18,76% длины головы). Наименьшая высота тела укладывается в диаметре глаза в I,3-1,7 раза у сарматского песка, а у карпатского - в I,7-2,3 раза. Длина R укладывается в толщине хвостового отсека в длине в 2,3-2,8 раза у карпатского - в I,7-2,2 раза.

Вопрос о совместном существовании вышеуказанных подвидов мы считаем спорным, т.к. количество песчаных, соответствующих каждой-либо частей тела их иного подвида очень мало, около 3%. Остальные проникают в такие количественные признаки, каким к одному или другому подвиду. Например, часть из них по соотношению длины хвостового отсека к его высоте (в среднем 2,5), по соотношению длины хвостового отсека к диаметру глаза (в среднем 1,5) относится к G.sarmaticus, а по соотношению диаметра глаза к межглазничному пространству (у, 6) - к G.carpaticus. Другая группа имеет большинство признаков G.carpaticus, но по длине хвостового отсека к его толщине (2,8), или к его высоте (2,5) относится к G.sarmaticus. И
третья группа — большинство признаков сходны с G. cerpathicus, но по соотношению высоты хвостового столба к диаметру глаза (1,5) можно отнести к G. sarmaticus. Наверное в этом районе они свободно скрешиваются и количество гибридов преобладает над чистой линией. Отсюда можно предполагать, что гибриды подвид чистую линию и таким образом попадает самостоятельный подвид, соответствующий иные существующим условиям в данном водоеме.
Для окончательного подтверждения выявленного необъяснимо дополнительные исследования.

Объективный подход к определению рыб по их температурным, тектоническим или по внешним признакам. Питаются в основном бентосом, личинками насекомых, ракообразными и водорослями, иногда съедают иголки других рыб (S. carpa, 1952, G. yasumatsi, 1999). Живут стайами и придерживаются маловодной. В наших сборах оказались 62,5% самцов и 36,5% самок. Нерестится в апреле—мае—июне, в верховых реках откладывают до 2000 икринок на небольших глубинах. Икрометание порционное.
Молодь достигает в середине июля в среднем 15,0 (10,2—26,0) мм, вес в среднем 47,1 мг. Через месяц, примерно к 15 августа, некоторое имеют длину 25,0 (21,5—31,0) мм, вес 243,0 (270,0—500,0) мг.
В эмбриональных размерах, промежуточного значения не имеет, если не считать, что местные жители используют в пищу, так как их очень вкусное.

II. Днестровский длиноусый пескарь — Петров — Gobio kessleri Dybowskii, 1862

Таксономия: Днестр
В Кролеве его называют "днестровский штук", в Молдавии — штук. О наличии данного вида в Р. Притя указывается только в работах И. И. Шалербекова (1969).

Ш 6,3 (6—9); Р I 13—15 (16); V II 7, I (7—8); A I 6—7.
Число чешуи в боковой линии в среднем 41,5 (39—45). Количество тяжинок на грудной дуге — 1,3 в среднем 1,5.
Формула глоточных зубов тоже неправильная. Наиболее часто встречаются экземпляры с глоточными зубами 5:3:3,5, но бывают 4:3:3:4,5:2:2,5:6,2:2,5. Длина тела 6,46 (4,5—7,45) см, вес — 3,4 (1,2—4,8) г.
При выходе из магатуна длиноусый пескарь сходен с Gobio gobio. Тела у обоих видов удлиненные, покрыты более чешуей среднего размера. Горло у обоих гад. Антердорсальное рагрошение у днестровского пескаса в среднем составляет 27,06% (44,06—49,6%) от длины тела, так же как и у Gobio gobio (47,6%). Неодорсальное рагрошение у первого — 42,27% (40,4—44,5%), у второго — 41,96% длина тела, около 20% антердорсального. Сходным является у них и расстояние между V и A (у первого — 21,50%, у второго — 21,35% длины тела). Длина головы у обоих видов больше длины хвостового стебля (22,5%), длина головы и длина хвостового стебля укладывается в длине тела 3,6—4,3, в среднем 4 раза.

По сравнению со своими видами, днестровский пескарь по 6—10 темным пятнам. У большинства экземпляров при освещении хвостового плавника есть еще на одном темном пятне, которое различается довольно ясно. Низ светлой—желтый. На спине и хвосте видны зеленые овальные. В неправильном расположении.

Днестровский длиноусый пескарь описывается по Притя гораздо ниже, чем карпатский и сербский пескарь, относится только к низовым Притя. Как и большинство пескарь, питаются в основном бентосом (личинками насекомых, членистоногих, водорослей и др.). Живут стайами с умеренным темением и с песчаным дном. Объекты пескары этого вида маленькими островами на больших глубинах. Сроки нереста сходны со сроками нереста карпетского и сербского пескара. В уловах преобладают самки — 62,5%, а на долю самцов приходится только 37,5%. Вопрос об уточнении, какие именно географические разновидности обитают в притоках Притя, не решен. По нашим предварительным данным, в Притя встречаются Gobio kessleri kessleri и Gobio kessleri antipai. Возможно, что они относятся между ними и промежуточные формы.

Днестровский длиноусый пескарь, как и все остальные пескары, промежуточного значения не имеет, все они относятся к какой-то мере панцы для других рыб (ком, жирах, судак и др.), которые в Притя довольно многочисленны.

II. Пескарь белоспинный — Чернорепка— рус. — Gobio albipinnatus vladikovi Fang, 1943

Таксономия: оз. Кату (Дунайский бассейн)
Длина тела в среднем 5,2 (3—7) см, вес — 2,7 г. Антердорсальное рагрошение — 42,2 (38—48%) от длины тела без C. Неодорсальное — 36,0 (30—41%). Найбольшая высота тела — 20,0
(I,24); длина головы 21(6-27,7); длина рыла 7(6-II,0) и диаметр глаза 5,0-8,2% от длины тела. Хвостовой отрезок составляет I,3(5-25,1), а его высота - 7,0-9,3% от длины тела.

Белоперый пескарь во многом сходен с диатропическим длинноусым пескарем. Но первых, анальное отверстие расположено ближе к основанию боковых плавников, чем к анимальем. Расстояние от ан. до V в среднем 8,6 (6,5-9,8%), а от ан. до A - II,8 (10,4-14,0)% от длины тела. Длина грудных плавников у белоперого пескара I,8-24. у диатропического - 20-25%; длина боковых у первого I,4-20, у второго - 15-20% от длины тела. Сходны они и по длине головы, длине рыла и т.д.

Отличаются они тем, что хвостовой отрезок белоперого пескара более тонкий, его высота всегда больше толщины. Соотношение наименьшей высоты тела к толщине хвостового отрезка, измеренной у основания анального плавника в среднем I,2 (1,0-1,8), в то время как у G. kelberi никогда не превышает I. Межпластиничное пространство (ширина лба) у белоперого пескара меньше, чем у G. kelberi. Диаметр глаза у первого составляет 60-110% от высказанных величин у второго - 60-90%. Экология его в основном сходна с предыдущими видами. Однако следует отметить, что белоперый пескарь предъявляет в местах со слабым течением, чаще в стаций Прута на равнинном и устьевом участках и в незначительном количестве.

Таблица 8

<table>
<thead>
<tr>
<th>Признаки</th>
<th>M_{m1}</th>
<th>G</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела без G, см</td>
<td>21,01±0,74</td>
<td>5,33</td>
<td>3,9-40,6</td>
</tr>
</tbody>
</table>

В процентах от длины тела

<table>
<thead>
<tr>
<th>Признаки</th>
<th>M_{m1}</th>
<th>G</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Антеноральное расположение</td>
<td>50,94±0,26</td>
<td>1,84</td>
<td>45,8-55,5</td>
</tr>
<tr>
<td>Антеноральное расположение</td>
<td>74,36±0,30</td>
<td>2,14</td>
<td>72,0-76,1</td>
</tr>
<tr>
<td>Антеноральное расположение</td>
<td>61,58±0,31</td>
<td>2,20</td>
<td>46,5-53,6</td>
</tr>
<tr>
<td>Постденторальное расположение</td>
<td>38,32±0,20</td>
<td>2,05</td>
<td>34,7-43,3</td>
</tr>
<tr>
<td>Расстояние между P и V</td>
<td>28,00±0,30</td>
<td>2,15</td>
<td>24,6-32,2</td>
</tr>
<tr>
<td>Расстояние между V и A</td>
<td>22,76±0,28</td>
<td>2,00</td>
<td>19,8-25,9</td>
</tr>
<tr>
<td>Длина хвостового отрезка</td>
<td>20,52±0,09</td>
<td>0,60</td>
<td>18,8-22,6</td>
</tr>
<tr>
<td>Длина хвостового плавника</td>
<td>13,88±0,17</td>
<td>1,20</td>
<td>16,4-21,4</td>
</tr>
<tr>
<td>Длина верхней лопасти C</td>
<td>20,47±0,13</td>
<td>0,90</td>
<td>19,2-22,3</td>
</tr>
<tr>
<td>Длина нижней лопасти C</td>
<td>20,70±0,16</td>
<td>1,10</td>
<td>18,5-22,3</td>
</tr>
<tr>
<td>Плавник большой C</td>
<td>22,36±0,23</td>
<td>1,60</td>
<td>20,0-25,2</td>
</tr>
<tr>
<td>Плавник большой D</td>
<td>19,45±0,08</td>
<td>0,58</td>
<td>18,9-22,3</td>
</tr>
<tr>
<td>Длина осложнения D</td>
<td>12,46±0,14</td>
<td>0,59</td>
<td>11,3-14,3</td>
</tr>
<tr>
<td>Длина осложнения D</td>
<td>17,83±0,14</td>
<td>1,00</td>
<td>15,4-19,3</td>
</tr>
<tr>
<td>Плавник большой A</td>
<td>7,40±0,04</td>
<td>0,29</td>
<td>6,7-8,0</td>
</tr>
<tr>
<td>Длина осложнения A</td>
<td>16,59±0,22</td>
<td>1,50</td>
<td>14,5-18,9</td>
</tr>
<tr>
<td>Плавник большой D</td>
<td>17,58±0,14</td>
<td>1,00</td>
<td>16,0-19,2</td>
</tr>
<tr>
<td>Длина V</td>
<td>15,76±0,14</td>
<td>1,00</td>
<td>13,8-17,3</td>
</tr>
<tr>
<td>Длина головы</td>
<td>26,25±0,13</td>
<td>1,00</td>
<td>21,9-30,7</td>
</tr>
</tbody>
</table>

В процентах от длины головы

<table>
<thead>
<tr>
<th>Признаки</th>
<th>M_{m1}</th>
<th>G</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Предденторальное расположение</td>
<td>40,18±0,31</td>
<td>2,19</td>
<td>39,0-46,5</td>
</tr>
<tr>
<td>Диаметр глаза</td>
<td>15,80±0,44</td>
<td>3,11</td>
<td>11,6-20,7</td>
</tr>
<tr>
<td>Заглавиальный отрезок</td>
<td>42,42±0,30</td>
<td>2,12</td>
<td>37,9-45,6</td>
</tr>
<tr>
<td>Межденторальное расположение</td>
<td>35,92±0,42</td>
<td>3,00</td>
<td>30,5-41,4</td>
</tr>
<tr>
<td>Высота головы у затылка</td>
<td>54,47±0,30</td>
<td>2,11</td>
<td>50,5-58,7</td>
</tr>
</tbody>
</table>

Все составляют 1/4 часть тела, а хвостовой плавник имеет 19,98 (16,4-21,4)% от длины тела.

Осилия спинного плавника составляет 12,46, а его высота - 17,83 (15,4-19,3)% от длины тела (табл.6).

Боковые плавники (15,76%) короче грудных (17,6%). Голова довольно большая, она составляет в среднем 26,25 (21,9-30,7)% от длины тела. Рыло умеренной длины (40,18%), глаза большие, их

Зак. 128
дiameter в среднем 15,8 (11,6-20,7) от длины головы. Лоб широкий (35,9%), голова у затылка высокая, тут она имеет в среднем 54,4% от длины головы.

Данный подвид, как и вид в целом, очень пластичен, о чем нам говорят полученные σ и коэффициенты вариации. У солнцевата сольвы составляет 1,0-3,0, а коэффициент вариации - 4,0-19,5.

Нерестится в мае - июле в местах с хорошим током воды, богатым кислородом. Плодовитость в среднем 15-30 тячек икринок. Период инкубации 10-14 дней (P. Bäcker, 1964).

Питаются обычными учащимися бентосом (личинками насекомых, червяками, ракообразными, водорослями). Упитанность в среднем 1,59 (I,2-I,9).

Распространен учащимися в основном в русле Прута, а в его при токовых реках. В поймовом пойме учащихся и в плавнике озера, но время охлаждается, поэтому в рыбном промысле его значение сводится к нулю.

Примечание во внимание, что малые его вкусные, мы считаем, что стоило бы заниматься его изучением, разведением. Во всех районах Костромской ТГС будет полупостоянной, следовательно, учащаяся водоросля может вырастать и в данном водоеме. Стимулирует учащегося на размножении и заглатывании.

Тегратаурсис: Днепр
Первыя сведения о наличии днепровского учащихся в р. Прут имеются у автора Л. Г. Лопа и Н. Н. Кармова, 1968. О существовании такой формы в р. Прут, указанная кихолог P. Bäcker (1964), но не выделяет ее в определенный подвид, а просто отмечает некоторые различия.

Длина взрослых учащихся в среднем I7,78 (I1,6-27,7) см, вес - 95,7 (28,2-265,0), 7.

Ч II (IV) 8 (7-9); P I (I-IV) 8 (7); A II (II) 5 (5-7). Глоточные зубы трехрядные 2,5:5:3,2.

Отличается днепровский учащийся от обыкновенного по ряду признаков: соотношением длины спинного плавника к длине тела без C, которая для B. barbus borysynienicus равна 4,54 (3,5-5,0), а у B. barbus barbus в среднем 5,5. Антердорсальное расстояние у днепровского учащихся 54,12 (49,5-69,0) (табл. 9), а у обыкновен -

Таблица 9

<table>
<thead>
<tr>
<th>Признаки</th>
<th>Му</th>
<th>σ</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела без C, см</td>
<td>17,78±0,71</td>
<td>5,00</td>
<td>II,6-27,7</td>
</tr>
</tbody>
</table>

В процентах от длины тела

<table>
<thead>
<tr>
<th>Признаки</th>
<th>%</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Антедорсальное расстояние</td>
<td>53,20±2,26</td>
<td>1,84</td>
</tr>
<tr>
<td>Антеннальное расстояние</td>
<td>74,95±0,29</td>
<td>2,08</td>
</tr>
<tr>
<td>Антентернальное расстояние</td>
<td>54,20±0,26</td>
<td>2,01</td>
</tr>
<tr>
<td>Постдорсальное расстояние</td>
<td>36,60±0,33</td>
<td>2,31</td>
</tr>
<tr>
<td>Расстояние между P и V</td>
<td>26,94±0,15</td>
<td>1,06</td>
</tr>
<tr>
<td>Расстояние между V и A</td>
<td>21,49±0,14</td>
<td>1,00</td>
</tr>
<tr>
<td>Длина хвостового стебля</td>
<td>18,83±0,16</td>
<td>1,16</td>
</tr>
<tr>
<td>Длина хвостового плавника</td>
<td>22,49±0,20</td>
<td>2,02</td>
</tr>
<tr>
<td>Длина верхней лопасти</td>
<td>22,25±0,28</td>
<td>2,08</td>
</tr>
<tr>
<td>Длина нижней лопасти</td>
<td>22,23±0,41</td>
<td>2,91</td>
</tr>
<tr>
<td>Наименьшая высота тела</td>
<td>11,66±0,19</td>
<td>1,32</td>
</tr>
<tr>
<td>Наименьшая высота тела</td>
<td>9,82±0,10</td>
<td>0,70</td>
</tr>
<tr>
<td>Наименьшая толщина тела</td>
<td>15,41±0,20</td>
<td>1,34</td>
</tr>
<tr>
<td>Длина основания D</td>
<td>12,76±0,11</td>
<td>0,80</td>
</tr>
<tr>
<td>Наименьшая высота D</td>
<td>22,03±0,19</td>
<td>1,37</td>
</tr>
<tr>
<td>Длина основания A</td>
<td>7,36±0,09</td>
<td>0,60</td>
</tr>
<tr>
<td>Наименьшая высота A</td>
<td>17,09±0,14</td>
<td>1,01</td>
</tr>
<tr>
<td>Длина P</td>
<td>18,50±0,15</td>
<td>1,07</td>
</tr>
<tr>
<td>Длина V</td>
<td>16,68±0,20</td>
<td>1,39</td>
</tr>
<tr>
<td>Длина головы</td>
<td>28,00±0,28</td>
<td>1,96</td>
</tr>
</tbody>
</table>

В процентах от длины тела головы

<table>
<thead>
<tr>
<th>Признаки</th>
<th>%</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Предпаздали после тела</td>
<td>37,60±0,28</td>
<td>1,99</td>
</tr>
<tr>
<td>Диаметр глаза</td>
<td>20,01±0,41</td>
<td>2,90</td>
</tr>
<tr>
<td>Задерганный угол глаза</td>
<td>40,93±0,29</td>
<td>2,04</td>
</tr>
<tr>
<td>Межпаздали после тела</td>
<td>42,16±1,49</td>
<td>16,50</td>
</tr>
<tr>
<td>Высота головы у затылка</td>
<td>54,88±0,45</td>
<td>3,20</td>
</tr>
</tbody>
</table>
ного - 51,28 (46,5-53,6)% от длины тела. Постдорсальное расположение у первого - в среднем 36,8, у второго - 36,3%. Расстояние между I и V у первого - 28,94, у второго - 28,00% от длины тела. Хвостовой стебель у диапневского усача короче (18,23%), чем у обыкновенного (20,52%), а тохвостовой плавник длиннее (22,49%) у диапневского, чем у обыкновенного (19,86%). Такое же явление можно наблюдать и по отношению к другим плавникам. Например, спинной плавник у диапневского усача выше (22,03%), чем у обыкновенного (17,93%); брюшной, боковой и подхвостовой плавники также больше у диапневского, чем у обыкновенного. Этим можно объяснить то, что диапневский усач встречается в местах с нанесенным течением, а обыкновенный в местах с умеренным течением.

Питается усачи личниками насекомых, червями, хищниками и водорослями. Упитанность в среднем 1,62 (1,13-1,86). В наших обнаружено больше самцов (59%), чем самок (41,8%).

Наибольшее диапневский усач, видимо, в тех местах, где и обыкновенный в мае - июне. Мальки и I I врубочные достигают длины 21,0 (15,0-28,0) мм, веса 166,0 (50,0-350,0) г. Для морфологической характеристики было проанализировано 14 усачей. Сравнение полученных данных усачей и взрослых усачей, мы нашли следующие отличия: у усачей антедорсальное (54,4%), антевентральное (77,14%) и антевентральное (55,31%) расположение больше, чем у взрослых (52,80, 74,95 и 54,12%), а постдорсальное расположение меньше (33,90%), чем у взрослых.

Определенные отличия наблюдаются и по длине хвостового стебля, где M. diff. равна 6,10. У сеголеток хвост очень длинный и составляет в среднем 25,5 (22,6-27,3)% от длины тела. У взрослых - 22,49 (16,4-27,3). Незначительные отличия наблюдаются по индексу I/H. У сеголеток голова длиннее (29,97%), шире (межзубчатое расстояние у них равно 63,90% от длины головы) и глаза большие (24,60% от длины головы).

Для определения характера питания сеголеток было взято 10 желудков. Анализировали содержимое, пришли к выводу, что сеголетки в этот период питались личниками Lepidoptera, Pyliridae, Cyclopa и Tendipena. Найдены ниши Ephemeroptera и Ascaro- cyclopa viridita.

Сеголетки после вылова скатываются вниз по течению и накапливаются на разницировом и утвейском участках реки. Взрослые формы в этих районах не обнаружены.

Длина тела сеголеток в июле месяце в среднем 14,6, а в августе - 21,7 мм. Наличие выпада тела у них в июне 3, а в августе - 4,6 мм. Средний вес в июне 56, в августе - 156 мг (Л. Л. Пона, 1964).

Роль диапневского усача в промысле незначительна и носит местный характер.

15. Балканский усач - Крымская ограничена - Barbula meridionalis penteurii Heckel, 1826

Терра typica: река Мурча (CPP)

16. Основная усач - Балканский - Albuncus alburnus alburnus (L.), 1758

Терра typica: Европа
Усач распространен в бассейне р. Дунай до самого впадения в Дунай. Нет его в стоячих, заболоченных водоемах и в холодных притоках. Длина тела усача в среднем 8,72 (6,4-11,0) см, вес 9,61 (1,2-24,0) г.

P III 8; P I (13) I4-I6 (18); V I (7) B (9); A II, 11, 14 - 7-9 53. Глазные глаза 5,2-2,5. Жаберные тяготение на первой жаберной дуге по наружной стороне 18-23, в среднем 21,7.

Пластические признаки в основном постоянны, так как среднее квадратическое отклонение s не больше 3. Кожичение составляет микропланчное расположение ($\sigma = 4,35$), заглаживший отдел головы ($\sigma = 4,25$) и выровненные глаза у взрослых ($\sigma = 5,60$), но эти различия не столь существенны и относятся, видимо, к возрастным группам.

Антедорсальное расположение составляет 55,06 (51,0-65,0)% от длины тела, антевентральное - 84,10, антевентральное - 46,0 (41,4-54,6) и постдорсальное расположение равно 37,45 (32,7-57,6)% от
длинь тела. Хвостовой стебель (20,14%) почти равен длине хвостового плавника (21,4%). Хвост разновидностей, хотя нижняя лопасть длиннее верхней на 1,0% от длины тела. Спинной плавник короткий (II,32%) и довольно высокий, анальный плавник длинный и составляет в среднем 19,22% от длины тела. Почти такую же длину имеют и грудные плавники. Голова равна 21,5% (18,9-26,0%) от длины тела. Глаза уязвимы довольно большие - 30,02 (28,1-34,8%) от длины головы. Рыло короткое, высота головы у взрослых большая (70,03%), а хвостовое расстояние (40,40%) меньше зачаточного отдела головы (45,20% от длины головы).

Питается уклы улитками насекомых, моллюсками и водорослями, упитанность средней 3,9 (1,91-2,52).

В ульях преобладают двухлетки (51,4%) и трехлетки (45,1%). Длина двухлеток - 5,12 см, вес - 1,77 г. Двухлетки в длину имеют 7,92 см и весит 6,12 г. У трехлеток длина тела в среднем 10,2 см, вес - 12,31 г. Упитанность оказалась большей у двухлеток - 1,47 и у трехлеток - 1,31 (табл.10).

Для определения пола были взяты 60 экземпляров, у которых 40 оказались самками (66,6%). Разнообразится уклад в мае-июне. Окладывает одно яйцо, по нашим данным, в 3 яйца.

В некоторых водоемах ее дозревают в больших количествах, (В. Бугнит, A. Александрасю, 1963). В Грузии уклад не проминальный. Значение ее сходится к тому, что она служит кормом для сома, жеха и других хищников. В некоторых районах уху ловят местное население для уха или для соления.

Таблица 10

Возрастной состав, вес, длина и упитанность укля

<table>
<thead>
<tr>
<th>Возраст</th>
<th>Кол-во экз.</th>
<th>%</th>
<th>Длина, см</th>
<th>Вес, г</th>
<th>Упитанность</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>4</td>
<td>3,5</td>
<td>5,12</td>
<td>1,77</td>
<td>1,33</td>
</tr>
<tr>
<td>I+</td>
<td>59</td>
<td>51,4</td>
<td>7,92</td>
<td>6,12</td>
<td>1,47</td>
</tr>
<tr>
<td>2+</td>
<td>52</td>
<td>48,1</td>
<td>10,20</td>
<td>12,31</td>
<td>1,31</td>
</tr>
<tr>
<td>Всего</td>
<td>115</td>
<td>100</td>
<td>8,72</td>
<td>9,61</td>
<td>1,39</td>
</tr>
</tbody>
</table>

Terrae typica: Центральная Европа

Длина теле в среднем 6,88 (3,1-11,1) см, вес - 4,92 (0,4-12,7) г. DIII (11) (9); PIII (1) (14); V (1) (14) (15). Глазное зубов 2,5-5,5, а у двух экземпляров 2,5-4,2. Боковая линия насчитывает 46-50 чешуек, желтых тицинок на желтой дуге по брюшной стороне 8-9. Пластинчатые признаки следующие: антенторальное расстояние 53,60 (51,0-56,8) больше антенторального - 47,87% от длины тела. Расстояние между строением и брюшным плавником (23,51%) больше, чем между брюхом и анальным (18,06%). Длина головы составляет от 23,4 до 27,2%, в среднем 24,91% от длины тела. Насыщее же тела больше длины головы и составляет 53,3-92,6% от длины тела. Боковая линия также от длины тела больше (47,87%) от длины тела.

Длина хвостового стебеля почти равна длине хвостового плавника. Боковая линия короткая (в среднем 14,66% от длины тела) и скрытая (19,22%). Окраска серебристо-бежевая. Вдоль боковой линии ткется яркая двойная полоска, отчетливо заметная, что боковая линия двойная.

Сами составляют 30,6%, а самца 69,4%. Сами, чуть меньше самок, длина их от 5,8 до 7,5, в среднем 6,85 см. У самок длина тела без 0,5-6,5,0 см, в среднем 7,32 см. В везде самки также достигают 9 см в размерах. Вес самцов 5,10 (3,2-7,2) г, самок - 5,35 (3,1-10,2) г. Упитанность самок 1,46 до 2,03, в среднем 1,65; самцов - 1,18-1,85, в среднем 1,57.

Естественно биотопы в во-взрослых, откладывая свои яйца на каменистую грунт. Питающихся в основном бентосом: личинками насекомых и водорослями.

Промежуточного значения биотопы не имеют. По указанию И. А. Александра (1969) в р. Черемош осенью и зимой биотопы составляют до 12,6% корма дунаяского дождя.

Terrae typica: Швеция

Длина теле в среднем 12,45 (9,5-14,9) см, вес - 46,9 (18,0-84,0) г. D III (11) (9); P III (1) (14); V II (14) (15); V II (1) (14) (15); V II (1) (14) (15). Боковая линия 46,71 (43-52) чешуек. Количество
часы дубы двухрядные: 2,5:5,2.
Анатодоральное расположение - 57,50 (52,6-60,9), антентальное - 66,98 (60,4-70,0),%. Расстояние между P и V почти равно расстоя- нию между V и A. Наибольшая высота щупа (37,54%) чуть больше постдорального расположения (36,83%). Длина хвостового стебля почти равна длине основания D (табл. II). Анальный плавник самый длинный и составляет в среднем 25,38 (21,6-30,0)% от длины тела. Спинной плавник самый короткий - 13,24%. Грудной плавник составляет 18,36% от длины тела, а брюшной - 17,7%.
Голова невысокая (22,55% от длины тела), рот короткий (24,63% от длины тела), глаза большие (30,15% от длины головы). Рот полуцилиндрический, лоб довольно широкий и составляет в среднем 44,46 (39,0-60,03)% от длины головы.
Сами густеры мальют отличаются от самок. Незначительные отличия можно наблюдать по антентальному расположению, которое у самцов в среднем составляет 65,07%, а у самок - 67,71% от длины тела. Расстояние между P и V у самок больше (23,68%), чем у самцов (22,61%), где 16,1%. - 2,02.
Веса тела у самок также больше, в то время как анальный плавник у них меньше (24,65%), чем у самцов (26,34%). У самцов рыло чуть длиннее, чем у самок, однако глаза последних больше, чем у самцов. По всем остальным признакам они не отличаются.
Возрастной состав следующий: 15,5% четырехлетки, 3,4 двухлетки, 4,1,3 трехлетки, 27,6 четырехлеток и 12,1% пятилеток.
Сегменты имеют длину 2,3 (1,9-3,0) см, вес 0,2 (0,1-0,5); длину точки соответственно 9,6 (9,5-9,8) см и 21,5 (18,0-25,0) г. Трехлетки - в среднем 11,7 см и 38,2 г. Четырехлетки - в среднем 13,2 см и 52,6 г. Пятилетки - 14,3 (14,0-15,0) см и 67,3 (61,0-84,0) г.
Упитанность у разных возрастных групп равная. Сегменты меньше упятаны, чем у 1,6,1, а двухлетки хорошо, 2,38 и самые упитанные оказались трехлетки. - 2,41 (Л.П.Попа, 1971 a, b). По мере старения упитанность опять снижается: у четырехлеток упитанность ниже (2,30), чем у трехлеток, а у пятилеток еще ниже - 2,24.

Таблица II

<table>
<thead>
<tr>
<th>Признаки</th>
<th>a</th>
<th>b</th>
<th>Пределы колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела без C, см</td>
<td>12,45±0,19</td>
<td>1,32</td>
<td>9,5-14,9</td>
</tr>
<tr>
<td>Число разветвлений лучей в D</td>
<td>8,3±0,08</td>
<td>0,53</td>
<td>8,0-10,0</td>
</tr>
<tr>
<td>Число разветвлений лучей в P</td>
<td>14,93±0,10</td>
<td>0,70</td>
<td>14-16</td>
</tr>
<tr>
<td>Число разветвлений лучей в A</td>
<td>21,12±0,23</td>
<td>1,60</td>
<td>17-25</td>
</tr>
<tr>
<td>Число чешуй в боковой линии</td>
<td>46,7±0,31</td>
<td>2,17</td>
<td>43-52</td>
</tr>
<tr>
<td>Щетинки тонких на поперечной линии</td>
<td>14,42±0,13</td>
<td>0,95</td>
<td>13-18</td>
</tr>
</tbody>
</table>

В процентах от длины тела

Предчелюстное расположение	57,50±0,27	1,90	51,5-60,9
Антентальное расположение	66,98±0,33	2,30	60,4-70,0
Антентальное расположение	46,24±0,17	1,17	43,0-49,5
Постдоральное расположение	36,83±0,25	1,61	34,1-39,4
Расстояние между V и A	23,20±0,28	1,98	18,3-27,5
Расстояние между P и V	23,37±0,19	1,39	20,0-25,2
Длина хвостового стебля	13,77±0,15	1,10	11,4-16,7
Длина хвостового плавника	25,44±0,35	2,37	20,3-29,0
Найбольшая высота тела	37,84±0,31	2,11	33,4-42,4
Наполненная высота тела	11,12±0,11	0,77	9,7-13,2
Длина основания D	13,24±0,13	0,95	11,4-15,3
Найбольшая высота D	28,70±0,28	1,92	24,5-32,5
Длина основания A	25,38±0,24	1,71	21,6-30,0
Найбольшая высота A	19,50±0,24	1,67	15,4-23,4
Длина P	19,35±0,15	1,03	17,6-21,9
Длина v	17,72±0,14	0,85	15,7-19,3
Длина головы	22,55±0,15	1,03	19,9-25,3

В процентах от длины головы

Предчелюстное расположение	24,60±0,48	3,40	19,2-30,8
Диаметр глаза	30,19±0,32	2,26	26,0-33,4
Затылочный отдел головы	46,15±0,36	2,50	38,5-50,0
Междуглазное расстояние	44,46±0,42	2,94	39,0-50,0
Высота головы у затылка	83,57±0,76	5,38	73,3-91,5

Зак. 128
Гусестра до 3-х лет растет интенсивнее (как и в других речах Европы), а потом темп роста постепенно снижается.

С конца апреля до середины июня яйца откладывают икры на неглубокие места в плутах Прута. Нерест порционный. В начале июня, в яйцах преобладают икры двух видов: один с диаметром в среднем 1,0 (0,9–1,3) мм, а другой с диаметром 0,7 (0,5–0,8) мм. Отходы можно предполагать, что икра они откладывают в два порции. У ряда экземпляров отмечается трехкратное икрометание. Коэффициент зрелости в этот период в среднем равен 20 (16–24). Половозрелость - 21-26 месяцев икринок.

Селезни гусестры в середине августа достигают в длину 23,0 (19,5–30,2) мм и весят 218,0 (113,0–520,0) мг. Упитанность у них небольшая - 1,46-1,89, в среднем 1,61. Нагрузка веса составляет в среднем 25,6 (23,0–31,8) % от длины тела без С, фактически немного меньше, чем у породы особей (37,84%).

Пищевой рацион гусестры состоит из личинок хирономид и других наноов, ракообразных (водяных) зеленых водорослей и других органических остатков.

Гусестра в р. Прут мальпходится и встречается только на правом и устье участках. Ее уловная доля в контролируемых облас- тях на этих участках составляет всего 0,1%. В плутах Прута длина изменяется чаще, что означает как мелочь 1-2-й группу, поэтому не поддается более точному учету.

I. Дунайский лещ - Платиколоктв - Abramis brama danubii Pavlov, 1956

Таргатус: Дунай

Длина тела без С в среднем 22,4 (5,5–49,6) см, вес 315,8 (2,9–2200,0) г. a II 9 (10); a II 25–26; Р I 15–18; в II 8–12 (11). Боковая линия 48 б 5,3–56 чешуй. На первой жаберной дуге по 17–27 чешуй. Плоточные сухари овальной формы 5–5.

Тело леща довольно высокое. Нагрузка веса его в среднем 33,84 (30,6–39,6)% , а толщина 11,60 (9,7–15,4)% от длины тела.

Большинство пластических признаков стабильное. Исключение составляет наибольший обхват тела, который колеблется от 72,5 до 91,3% длины тела, где $d = 4,04$, диаметр глаза также относится к переменным величинам - $d = 3,66$, а сама величина колеблет от 22,9 до 37,5% от длины головы. Высота головы у заля- на также имеет большое колебание (61,8–82,2% от длины головы), но что объясняется, по-видимому, тем, что эта величина не характерна для многих видов рыб, так как место, где она измеряется, не стабильное и незначительные отклонения во время измерения дают большое колебание.

Антедорсальное расстояние (56,24%) чутком меньше, чем антедор- сальное (62,8%). Хвостовой отель довольно короткий, в среднем 13,7 (11,3–15,4) от длины тела. Он значительно короче, чем хвостовой плавник (27,12%).

Описной плавник короткий, но длина он составляет 13,24% от длины тела, но довольно высокий. Нагрузка веса его 28,60 (22,6–31,8)% от длины тела и равняется длине основания анального плавника (28,51%). Нагрузка веса анального плавника (21,25%) чуть больше длины Р (20,21%). Длина головы в среднем 25,98 (22,6–26,8)% от длины тела. Рыло короткое - 21,61 (17,7–26,7)% от длины головы (табл. 12).

Сравнительная морфологическая характеристика A. brama danubii с A. brama otientalis, выделяют довольно значительные отличия по большинству признаков. Например, антедорсальное расстояние ду- найского леща из с. Ялпуг составляет 58,25 (М.Ф. Наренкиным, 1956); в р. Прут - 56,24; в р. Куря - 54,88% от длины тела. Постдорсальное расстояние у леща из р. Прут равно 36,50; в с. Ялпуг - 35,65; а в р. Куря (Ю. А. Блажгпана, 1962) - 34,81% от длины тела.

Больше отличия наблюдаются у видов лещей дунайского и восточного про глубоких и анального плавников. Высота спинного плавника у восточного леща составляет 20,26; у дунайского леща из припудских озер Ялпуг, Катауль, Битай в среднем 23-24, у днепровского - 27,02 (А. И. Амбора, 1956), а у прудского он составляет 28,60% от длины тела. Такое же можно наблюдать и по отношению высоты анального плавника у леща из р. Куря, она равняется 15,66 у лещей припудских озер - в среднем 17–18, днепров- ских - 19,73; а в прудских - 21,26% от длины тела. Дунайский лещ в условиях Прута имеет и некоторое сходство с восточным лещем из р. Куря. Например, расстояние $d-v$ у первого 20,90%, у второго - 20,20%, $m.dif = 2,70$. Сходны они и по длине основания D, A и длине P и v, где $m.dif = 0,55–2,65$. Как отмечает
Таблица 12

Морфологические признаки леща, n = 50

<table>
<thead>
<tr>
<th>Признаки</th>
<th>$M \pm m$</th>
<th>σ</th>
<th>Предель колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела без C, см</td>
<td>10,78±0,84</td>
<td>5,66</td>
<td>7,5 - 27,3</td>
</tr>
</tbody>
</table>

В процентах от длины тела

<table>
<thead>
<tr>
<th>Признаки</th>
<th>$M \pm m$</th>
<th>σ</th>
<th>Длина основания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Антедоральное расстояние</td>
<td>56,24±0,26</td>
<td>1,64</td>
<td>63,1 - 61,9</td>
</tr>
<tr>
<td>Антевентрикулярное расстояние</td>
<td>62,22±0,25</td>
<td>1,76</td>
<td>59,4 - 65,9</td>
</tr>
<tr>
<td>Антегорганное расстояние</td>
<td>45,37±0,17</td>
<td>1,20</td>
<td>40,7 - 48,7</td>
</tr>
<tr>
<td>Гиперволюгальное расстояние</td>
<td>36,5±0,16</td>
<td>1,13</td>
<td>32,2 - 39,4</td>
</tr>
<tr>
<td>Расстояние между P и V</td>
<td>20,90±0,14</td>
<td>1,03</td>
<td>18,7 - 23,0</td>
</tr>
<tr>
<td>Расстояние между P и V и A</td>
<td>17,94±0,21</td>
<td>1,53</td>
<td>15,6 - 21,0</td>
</tr>
<tr>
<td>Длина хвостового стебля</td>
<td>13,7±0,16</td>
<td>1,16</td>
<td>13,3 - 16,4</td>
</tr>
<tr>
<td>Длина хвостового пловника</td>
<td>27,12±0,39</td>
<td>2,73</td>
<td>20,0 - 33,3</td>
</tr>
<tr>
<td>Наибольшая высота тела</td>
<td>33,84±0,31</td>
<td>2,17</td>
<td>30,6 - 39,9</td>
</tr>
<tr>
<td>Найменьшая высота тела</td>
<td>10,57±0,10</td>
<td>0,74</td>
<td>8,1 - 12,4</td>
</tr>
<tr>
<td>Найбольшая толшина тела</td>
<td>11,60±0,15</td>
<td>1,14</td>
<td>9,7 - 15,4</td>
</tr>
<tr>
<td>Найбольшая окруж. тела</td>
<td>31,00±0,58</td>
<td>4,04</td>
<td>22,5 - 91,3</td>
</tr>
<tr>
<td>Длина основания D</td>
<td>13,24±0,15</td>
<td>1,08</td>
<td>12,3 - 15,6</td>
</tr>
<tr>
<td>Наибольшая высота D</td>
<td>28,60±0,29</td>
<td>2,05</td>
<td>22,6 - 31,8</td>
</tr>
<tr>
<td>Длина основания A</td>
<td>28,52±0,17</td>
<td>1,17</td>
<td>26,2 - 32,6</td>
</tr>
<tr>
<td>Наибольшая высота A</td>
<td>21,2±0,20</td>
<td>1,44</td>
<td>16,5 - 23,4</td>
</tr>
<tr>
<td>Длина P</td>
<td>20,51±0,14</td>
<td>0,98</td>
<td>17,7 - 22,7</td>
</tr>
<tr>
<td>Длина V</td>
<td>17,24±0,15</td>
<td>1,05</td>
<td>15,6 - 20,2</td>
</tr>
<tr>
<td>Длина головы</td>
<td>25,98±0,23</td>
<td>1,64</td>
<td>22,6 - 28,8</td>
</tr>
</tbody>
</table>

В процентах от длины головы

<table>
<thead>
<tr>
<th>Признаки</th>
<th>$M \pm m$</th>
<th>σ</th>
<th>Длина основания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Предплосночное расстояние</td>
<td>21,60±0,34</td>
<td>2,38</td>
<td>17,7 - 26,7</td>
</tr>
<tr>
<td>Диаметр головы</td>
<td>31,42±0,52</td>
<td>3,66</td>
<td>22,9 - 37,5</td>
</tr>
<tr>
<td>Заплосночный отдел головы</td>
<td>47,22±0,39</td>
<td>2,69</td>
<td>42,1 - 52,0</td>
</tr>
<tr>
<td>Межплосночное расстояние</td>
<td>42,14±0,46</td>
<td>3,28</td>
<td>36,1 - 48,0</td>
</tr>
<tr>
<td>Высота головы у затылка</td>
<td>73,64±0,75</td>
<td>5,27</td>
<td>61,8 - 82,0</td>
</tr>
</tbody>
</table>

П.И. Павлов (1956), у дунайского леща голова длиннее (23,87), чем у Днепровского (22,96), а у прутового леща она еще больше, чем у дунайского из центральных озер — 25,98% от длины тела. Интересно отметить, что по мере передвижения к востoku величина ряда признаков уменьшается. Например, антегоргальное, антедоральное расстояния, высота нижнего и анального плавников, длина головы и др. (Л.Д. Попа, 1965 с, 1968).

Количество самцов меньше, чем самок, их соотношение 1:1,5. Половозрелость наступает на третьем году жизни, массовый нерест происходит на четвертом году. Весной, к концу апреля до середины июня самки откладывают в отводках на мелководье по 500—300 тысяч икринок. Длина вылупившихся мальков в среднем 5,1 мм (М.Ф. Папшев, 1956), через 35 дней они вырастают до 30 см в длину, а в это время на теле появляется чешуя (С.Ю. Ксенофонт, 1951).

Темп роста (в см) и веса (в г) дунайского леща в бассейне реки Прут следующий:

<table>
<thead>
<tr>
<th>Год</th>
<th>Темп роста (см)</th>
<th>Вес (г)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10,0 (9,8-10,0)</td>
<td>25,0 (20-35)</td>
</tr>
<tr>
<td>I +</td>
<td>17,5 (13,7-21,0)</td>
<td>76,0 (60-100)</td>
</tr>
<tr>
<td>2</td>
<td>21,5 (15,7-27,0)</td>
<td>235,0 (100-500)</td>
</tr>
<tr>
<td>3</td>
<td>30,2 (27,5-34,0)</td>
<td>600,0 (500-900)</td>
</tr>
<tr>
<td>4</td>
<td>37,5 (35,0-40,0)</td>
<td>920,0 (800-1100)</td>
</tr>
<tr>
<td>5</td>
<td>32,8 (30,0-36,0)</td>
<td>1000,0 (800-1200)</td>
</tr>
<tr>
<td>6</td>
<td>34,9 (32,0-40,0)</td>
<td>1200,0 (1100-1400)</td>
</tr>
<tr>
<td>7</td>
<td>42,0 (38,0-49,0)</td>
<td>1500,0 (1200-2200)</td>
</tr>
</tbody>
</table>

Он мало отличается от темпа роста леща на реках Днестр, например, в р. Днестр в возрасте один год дек имеет в среднем 8,8, а в два года — 17,2, в три — 23,1, в четыре — 29,6 и в пятилетнем возрасте — 33,0 см (М.Д. Билла, 1948).

Питаются лещ в основном зоопланктоном и зообентосом. В желудках обнаружено много ветвистых раков, циклопов, коловраток и врачей форм насекомых. В пищевой реакции леща входят также нитчатые водоросли и высокая растительность.

Всего исследовано 24 желудка, общий индекс наполнения желуда по Зинковичу в среднем составляет 24,6 (5,7-64,5). Частота встречаемости указанных пищевых компонентов следующая: ветвистые раков — 62,4%; циклопы — 54,2; водоросли нитчатые — 54,2; коловратки — 16,6; тенденциоз — 7,3; насекомые — 6,3%. Упитанность в среднем 2,11 (1,32-2,69).
В рыбном промысле р. Прут лещ играет второстепенную роль из-за малочисленности. Удельный вес его в среднем за 25 лет составляет 2,5 (0,1-11,0)%.

В последние годы после сильных паводков в 1969 и 1971 гг. его численность сильно возросла. Например, его удельный вес в уловах в 1968 г. составил 2,5%; в 1969 г. был 2,0; в 1970 г. был 5,7; в 1971 г. был 11,0%. Его численность обратно пропорциональна численности в данных водоемах.

В Пруге лещ поднимается до г. Новоселица (УССР). В контрольных обловах, проведенных непосредственно в русле Прута, его удельный вес составляет 0,8%.

Роль леща в рыбном промысле Прута может быть увеличена при создании возможностей для отлова леща в прирусловых зонах, проведении корректировок на рыбоводных работах в озерах, увеличении доступного размера его в уловах до 30-32 см, что было произведено Е. И. Томпаковым (1974) для Днестра, так как в стадии по уходу также наблюдается непонимание ожидаемого размера 30 см. В строительных водоемах Костомукской ГЭС можно выращивать товарного леща за счет естественных кормов. Для этого необходимо создать рыба-водоем для хорошего рыболовного материала для получения леща, карпа, карася, рыбьи, гололоба и судаков. Можно добриться, чтобы роль леща в данном водоеме была вписанна, как это сделано в Куйбышевском водохранилище (Е. И. Папиев, 1972).

20. Белоглазка - Каск.-Abramis barba barba (Pallas), 1793

Терра типис: Швеция

Длина тела в среднем 22,6 (II, 8-39,5) см, вес 166,0 (17,5-450,0) г, D 8 (8) 9; P I (I-16); V (1) 12 (1) 56 (3-44).

Боковая линия представлена формулой 48 8-2 55, а в среднем насчитывается 50 штук. Глоточные зубы одинаковые и всегда они 5:5. На первой вездерной дуге в среднем по лицевой части насчитывается 20,6 (17-23) тончайших.

Анализируя пределы колебаний измерений и величины ряда, установлено, что большинство признаков стабильно, то есть величина их не имеет значительных. К таким признакам относятся длина хвостового стебля, наибольшая высота тела, длина основания д., длина V и др. К трем стабильным признакам - пределы измерения, относятся длина и высота головы у взрослых, где симметричность 3,32-7,07.

Анализируя пластические признаки, можно отметить следующее: антодеральное расстояние (53,00%) чуть меньше антодерального (55,84%), антодеральное расстояние меньше (38,93%) постдоральной (42,00%). Расстояние между брыховым и брыховым антодералом в среднем 17,38 (15,9-21,4)% от длины тела и почти равно расстоянию между грудным и брыховым антодералом (18,25%).

Хвостовой отсек довольно короток (в среднем 10,34% от длины тела) и длины низкий. Его высота в среднем 8,96 (8,2-11,2)%.

Численность длиной более 50,0% в среднем 33,95 (32,0-38,7)% от длины тела без 0, а толщина всего 11,5 (10,0-12,5)%.

Спинной плавник короткий (9,86%) и довольно высокий (23,47%), а анальный плавник, наоборот, очень длинный (20,4%) и низкий. Найболее высокого его в среднем 14,45 (11,7-19,5)% от длины тела. Грудной плавник имеет в длину 18,85, а брыховой - 14,44% от длины тела.

Голова короткая и составляет в среднем 20% от длины тела. Глаза чуть большие (31,31% от длины головы), чем преддверное расстояние (27,72%), но меньше заглазничного отрезка головы. Голова высохая. Наибольшая высота у взрослых в среднем 11,20 (8,2-10,5)% от длины тела.

Белоглазка - это пресноводная рыба. Описана с斯基, что она любит места с быстрым течением (Р. Ковнарев, 1964), а другое, наоборот, что белоглазка любит речи с быстрым течением (П. И. Погонин, 1957). Мы согласны с мнением Н. И. Кожина, так как она в р. Днестре (М. Ф. Яковина, 1957) и в р. Дунай (М. Яковина, 1952) встречается довольно редко, потому что скорость течения в этих реках ниже, чем в р. Прут, где белоглазка в уловах довольно обыкновена.

В наших обловах имеется 18,4% двухлеток, 73,5 - трехлеток, 5,70 - четырехлеток, по 1,2% - пятилеток и шестилеток (табл. 13).

Двухлетки в среднем имеют 17,2 (11,0-14,9) см, в среднем 35,7 (17,6-50,0) г. Упитанность у них 1,55. Трехлетки в длину имеют 17,6 см, четырехлетки - 22,6, в шестилетки - 28,0 см. Всех у них надобно следующее: трехлетки прибавляют по 55,3 г, четырехлетки - по 71,0 г, пятилетки - по 89,0 г, шестилетки - по 150,0 г. Такой высокий темп роста говорит, что как р. Прут благоприятен для белоглазки.

В наших контрольных обловах самцы составляют 40,7, самки - 59,3%.
По размерам самцы меньше чем самки, их длина в среднем 15.46 (11.8-19.5) см, вес в среднем 63.4 г, а длина самок - 16.50 (12.9-20.5) см и средний вес - 75.0 г. Самцы более упитаны, чем самки. Их упитанность в среднем 1.63 (1.35-2.04), а у самок - 1.57 (0.94-1.89) (табл. 14).

Нерест белоглазок проходит в конце апреля - мае С.З. Крижановский (1947) указывает, что белоглазка для нереста подбирает место со спокойным течением. Там она откладывает в среднем по 60-80 тыс. яиц. Диаметр их в среднем 1.48 мм, при температуре воды 6-8°, через пять дней вылупляются мальки длиной 6-7 мм. В возрасте восьми дней длина их в среднем 9.0 мм. Р. Сюзов (1964) указывает наоборот, что белоглазка нерестится в местах с быстрым течением. Ем не удалось уточнить места нереста.

Белоглазка в условиях Прута питается в основном бентосом: моллюсками, личинками хирономид и низшими раками, водорослями и другими организмами.

В контрольных озерах белоглазка занимала 1.1% веса среди остальных промысловых рыб Прута. Необходимо также отметить, что чаще всего она встречается на участке от с. Болотино до с. Поганеца (Л.Л. Попов, 1964 г.). На этом участке Прута ее удельный вес 7.1%. Длина и вес белоглазки на разных участках разные. Самые крупные экземпляры добыты на участке от с. Липшицы до с. Болотино. Их длина в этом участке в среднем 22,1 см, на участке от села Поганецы до с. Джуркулевцы - в среднем 12,5 см. Правда, начиная от Катунки и ниже в наших озерах белоглазка отсутствует. Отсутствует и очень редкая она и в плавных озерах Прута.

Белоглазка малочисленная рыба, она имеет только местное значение.

21. Рыбец — Морунак — Vimba vimba oaxalina (Pallas), 1811

Terratypica: Азовское море

В наших озерах имелось 4 экз., из них 20 взрослых особей и 22 малых. Мальки собраны в летние месяцы 1961 г. на участке от г. Черновы до с. Болотино.
Взрослые особи имели в длину 22,6 (6,8-32,5) см, вес их 233,0 (4,2-440,0) г. Упитанность I,58 (I,21-2,48), II 3 (7-6)
9; II I 6 (14-17); V (1) 9 (8-10); A 3 20-21 (18-22). Боковая линия 55 (50.5-58) чешуй. Глоточные зубы однородные 5:5.
Количество жаберных тычинок на первой жаберной дуге 16 (16-19).
Антедорсальное расстояние составляет в среднем 50,90%, антевентрализальное - 67,72, антевентрализальное - 45,35 и постдорсальное - 39,77% от длины тела без C. Расстояние между P и V (22,82%) почти равно расстоянию между V и A (21,11%). Хвостовой отросток составляет 15,36 (13,2-17,3) % в длину, а в высоту - только 9,60% от длины тела.
Как указывает Р.Белёв (1964) и другие авторы, рыбка в Дунайском бассейне имеет 2 формы: высокотелая, у которых наибольшая высота тела составляет 26,3-32,5%, и низкотелая, наиболее высота тела которых составляет 23,2-30,6% от длины тела без C. Принято это во внимание, предполагаем, что рыбка P.Прут относится к низкотелой форме. Эта форма присутствует у формы риц-головника (V. Vibra bergii) из р. Буг, описанной в 1940 г. Ф.Д.Заходовым, но так как материал по этой форме еще малочислен, конкретные вывода пока нельзя сделать.
Толщина тела 12,33 (10,6-13,6)%. Длина хвостового плавника (19,59%) почти равна длине подхвостового плавника (19,74%). Спинной плавник короткий и достаточно высокий (22,65% от длины тела).
Грудной плавник (17,32%) длине, часто длиной (13,08%). Голова составляет 23,52% от длины тела, глаза довольно большие, они равны 1/4 части длины головы. Рыло узкое, длина глаза составляет почти 1/3 головы. Лоб сравнительно узкий (38,4% от длины головы). Высота головы у взрослых достигает 72,2% от длины головы.
Яровая форма рыбы низкотелая. Синяя форма в р. Прут отсутствует, но это предположение нуждается в проверке. Нерестятся они в июне - июле на местах с быстрым течением. Нерестование происходит (Л.В.Чепурикова, 1975). К середине июля яйца достигают 14,6 (11,3-16,5) мм и весят по 35,0 (8,0-74,0) мг. Темп роста рыбы низкотелой формы в дельте Дунай следующий: длина двуххлеток 13-26 см, в среднем - 21,4 см, вес - 40-170 г, в среднем - 89,0 г. Длина трехлеток - 27,6 (20,0-33,0) см, вес - 177,0 (90,0-230,0) г. Длина четырехлеток - 32,8 (30,0-41,0) см и вес - 300,0 (200,0-460,0) г (П.А.Завьялов и др. 1970).
Питаются рыбок в основном бентосом, гаммаридами, хирономидами, сердцевинами и Trichoptera. Удельный вес рица в контрольных объек- тах в 1962 г. незначителен и составляет 0,5%. После ввода в действие Котенковской ГЭС прозрачность воды увеличивается и рыбка может подниматься из р.Дунай в р. Прут. Правда, тогда уловки для нереста ухудшаются из-за плотины, поэтому будущий рыбопитомник должен заниматься и разводить рыбку.

22. Чехонь - Семейство - Salmonidae - Salmo salar (L.), 1758

Тетраутера: Балтийское море.
Длина поименных чехоней 28,90 (14,7-48,0) см, вес 289,0 (38,3-100,0) г, упитанность 0,61 (0,67-1,00). Д II II 7-8; P I I 6 (15-17); V (I) 7 и A II II 23 (25-30). Боковая линия насчитывает в среднем 106 (57-131) чешуи. Глоточные зубы двухрядные 2,5:1,2. На первой жаберной дуге насчитывается 21 (20-24) жаберных тычинок.

Антедорсальное расстояние (66,40%) почти равно антевентрализальному (66,45%). Антевентрализальное расстояние составляет 51,76 (47,5-65,7)% от длины тела. Расстояние между P и V почти вдвое большее расстояния между V и A. Хвостовой отросток короткий (II/II, 82%) и довольно высокий (6,92% от длины тела).

Низкобольшая высота тела 21,95 (19,3-25,2); толщина - 8,00 (7,5-8,9) от длины тела. Спинной плавник короткий (6,77%) и несильно высокий (10,3% от длины тела).

Подхвостовой плавник длиной (22,37%), но тоже довольно низкий (13,40%), за грудной плавник составляет 28,74 (26,9-30,3) от длины тела. Голова небольшая, в среднем 19,3% от длины тела. Глаза большие, их диаметр равен 28,90 (22,6-28,1) от длины головы. Рыло узкое, его ширина 28,00 (23,6-33,9) от длины головы. Рот маленький, направленный вверх.

Чехонь нерестится в апреле - июле, одна самка откладывает в среднем 30 тыс. икрыных (К.С.Бугай, 1969).

В контрольных объектах чехонь отмечен от Дунай до с. Долят- ник (МССР), где занимает всего 0,7%, поэтому данный вид рыбки для Прута не представляет особого интереса.
23. Горчак - Барбарис (Rhodeus sericeus amarus) (Bloch), 1782

Терра типа: Эльба

Длина тела взрослых горчаков 5,05 (3,7-6,1) см. Вес – 31,6 (10-6,7) г и упитанность – 2,28 (1,63-3,28). В (II) II 9,2 (6-10); P I 10,9 (10-12); V I-II 6-8; A (III) II 8 (9), идоль длины тела насчитывается 38,1 (35-41) чешуй. Воковая длина не полная, имеет только ее начало. На первой жаберной дуге насчитывается 6-7 (10) жаберных тициков. Глоточные зубы однорядные – 5:5.

Тело горчака довольно высокое, его наибольшая высота составляет 32,05 (29,4-36,8)% от длины тела, а толщина – 12,4%. Спинной плавник начинается чуть раньше, чем анальный, так как антедоржальное расположение 52,6% меньше, чем антневое (62,10% от длины тела). Брюшные плавники расположены ближе к антневому, чем к грудному, расположение между P и V составляет 25,09%, а между V и A всего лишь 16,78% от длины тела. Хвостовой стебель равен 1/5 от длины тела. Вход основания спинного плавника (20,32%) больше его высоты (12,28%). Высота анального плавника (16,22%) почти равна его длине (16,20%). Грудной плавник больше, чем анальный и составляет в среднем 17,06% от длины тела. Длина головы – 21,34 (18,8-25,3)% длины тела. Глаза очень большие, их диаметр равен 34,60 (31,3-39,5)% от длины головы. Рыло (27,49%) короче, чем заглазничный отдел головы (36,54% от длины головы). Лоб довольно широкий – 44,29 (39,3-50,0)% от длины головы.

Горчак – пресноводная рыба придерживается в основном береговой зоны реки, встречаются там, где распространены двухпорядковые моллюски.

Икрометание начинается в апреле и кончается в августе. Горчак откладывает яйца небольшими порциями на мантийную полость наземных моллюсков. Через 30-40 дней мальки покидают мантийную полость моллюсков. В это время их длина в среднем равняется 8-9 мм (M. Pardal, 1960).

Замечено, что мальки горчака, появляющиеся в середине июля, их длина 20,8 (13,5-28,2) мм, вес – 268 (37-490) мг. В середине августа они достигают длины 26,2 мм, веса – 340 мг. Половозрельными они становятся через год, по достижении в длину 3,0-3,5 см, питается в основном водорослями и другой растительностью. Так как горчак сорная рыба, в промысле она не имеет никакого значения.

24. Золотой карась - Карась (Carassius auratus) (L.), 1758

Терра типа: Европа (Швеция)

Длина тела 30 (6,4-27,7) см, вес – 103,6 (10,1-54,0) г и упитанность – 3,07 (2,86-5,0). В (II) II 16,3 (14-19); P I 14,5 (12-16); V III 7 (6-8) и A (II) II 6,46 (6-7). Воковая длина носит 32,0 (27-36) чешуй. Количество жаберных тициков на первой жаберной дуге 28,2 (24-30). Глоточные зубы однорядные, часто 4:4, встречаются и 3:4.

Характеристика пластических признаков приведена в табл. 15, из данных которой следует, что большинство признаков у золотого карася постоянны, это и его величина охватывает всю модель. Высота головы составляет 55,34 (50,6-60,0)% от длины тела. Антедоржальное расположение равно 55,34 (50,6-60,0)% от длины тела. Брюшной плавник расположен чуть ближе к грудному, чем к анальному, так как расположение между 2 и V равно 23,35%, а V-A – 27,86% от длины тела. Хвостовой стебель средней длины (16,3%) и достаточно высокий (15,3% от длины тела). Тело золотого карася довольно высокое. Наибольшая высота его 50,0%, а толщина всего 16,85% от длины тела.

Спинной плавник длины – длина его основания равна 35,06, высота – 21,72%. Анальный плавник короткий (13,18%) и высокий (19,51%). Брюшные плавники длиной (22,04%), чем грудные (18,84%). Голова занимает 28,62 (25,7-32,5)% от длины тела. Глаза средней величины, их диаметр (26,35% от длины головы) почти равен длине рыла (27,21%), ширина головы составляет 48,08 (39,3-53,3), а наибольшая высота головы – 93,03 (83,4-104,0)% от ее длины.

Количественное соотношение самцов и самок 2:1. Самицы малы, чем отличаются от самок. Близко находится по антедоржальному расположению, расположению между V и A, по длине хвостового стебля, наибольшей высоте тела, длине основания P, длине основания A, высоте A, длине P, длине рыла, диаметру глаза, заглазничному отделу головы, ширине лба и высоте головы у затылка, где M. alt., на 2,00. Определенные различия между самцами и самками наблюдаются по антевентральному расположению, расположению между P и V, длине головы, где M. alt., равно 3,10-3,6. От остальных признаков они отличаются некоторым различием, но они очень незначительны и при описании не принимаются во внимание.
Таблица 16
Морфологические признаки золотого карася, n = 50

<table>
<thead>
<tr>
<th>Признаки</th>
<th>(M_{20})</th>
<th>(\sigma)</th>
<th>Прецена колебания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела без C, см</td>
<td>9,65-0,21</td>
<td>1,41</td>
<td>6,4-13,7</td>
</tr>
<tr>
<td>Антедорсальное расстояние</td>
<td>55,34-0,36</td>
<td>2,45</td>
<td>50,8-60,0</td>
</tr>
<tr>
<td>Антевентринальное расстояние</td>
<td>76,54-0,38</td>
<td>2,56</td>
<td>71,0-81,6</td>
</tr>
<tr>
<td>Антевентринальное расстояние</td>
<td>52,00-0,28</td>
<td>1,89</td>
<td>47,0-55,0</td>
</tr>
<tr>
<td>Постдорсальное расстояние</td>
<td>22,23-0,30</td>
<td>2,24</td>
<td>18,9-27,4</td>
</tr>
<tr>
<td>Расстояние между R и V</td>
<td>23,36-0,24</td>
<td>1,30</td>
<td>20,0-26,0</td>
</tr>
<tr>
<td>Расстояние между V и A</td>
<td>27,76-0,24</td>
<td>1,61</td>
<td>24,6-22,0</td>
</tr>
<tr>
<td>Длина хвостового стебля</td>
<td>16,36-0,24</td>
<td>1,64</td>
<td>13,3-19,5</td>
</tr>
<tr>
<td>Длина хвостового плавника</td>
<td>24,74-0,25</td>
<td>3,38</td>
<td>19,4-29,9</td>
</tr>
<tr>
<td>Наибольшая высота тела</td>
<td>50,00-0,35</td>
<td>2,40</td>
<td>45,4-55,2</td>
</tr>
<tr>
<td>Наименьшая высота тела</td>
<td>15,36-0,11</td>
<td>0,76</td>
<td>13,3-16,9</td>
</tr>
<tr>
<td>Наибольшая толщина тела</td>
<td>17,65-0,20</td>
<td>1,35</td>
<td>15,3-21,8</td>
</tr>
<tr>
<td>Наибольший обхват тела</td>
<td>314,00-0,62</td>
<td>5,58</td>
<td>103,0-126,0</td>
</tr>
<tr>
<td>Длина основания D</td>
<td>35,06-0,29</td>
<td>1,48</td>
<td>31,1-39,9</td>
</tr>
<tr>
<td>Наибольшая высота D</td>
<td>21,72-0,32</td>
<td>2,18</td>
<td>19,5-27,6</td>
</tr>
<tr>
<td>Наибольшая высота A</td>
<td>13,18-0,22</td>
<td>1,48</td>
<td>10,9-16,5</td>
</tr>
<tr>
<td>Наибольшая высота A</td>
<td>13,18-0,22</td>
<td>1,48</td>
<td>10,9-16,5</td>
</tr>
<tr>
<td>Длина P</td>
<td>18,84-0,18</td>
<td>1,21</td>
<td>16,7-21,1</td>
</tr>
<tr>
<td>Длина v</td>
<td>22,04-0,23</td>
<td>1,54</td>
<td>19,4-26,5</td>
</tr>
<tr>
<td>Длина головы</td>
<td>28,62-0,24</td>
<td>1,65</td>
<td>25,7-32,5</td>
</tr>
</tbody>
</table>

В процентах от длины головы

Предчелюстное расстояние	21,21±0,43	2,89	20,0-32,5
Диаметр глаза	26,35±0,30	2,04	22,2-30,4
Заглазничное расстояние	47,00±0,40	2,70	42,5-51,9
Межчелюстное расстояние	46,08±0,53	3,60	39,3-53,3
Высота головы у затылка	93,03±0,89	6,01	83,4-104,0

В мае - июле золотой карась откладывает свои икринки несколькими порциями на подводную растительность. Плодовитость карася в среднем 40-50 тыс. икринок. Диаметр икринок перед нерестом в среднем 1,5-0,7 мм. Мальки появляются через 5-7 дней, в длину они имеют в среднем 6,0 мм (Th.Бычков, 1938).

Круглый карась становится половозрелым через 2-3 года. Темп роста карася следующий: длина годовиков 6,3-7,8 см, вес 13,0-20,4 г; длина двухлеток 11,6-13,4 см, вес 60,0-120,0 г; трехлеток аналогично 12,0-17,0 см, вес 100,0-186,0 г и четырехлеток в среднем 16,4 см, вес 200,0 г, пятилеток - 18,0 см, вес 250,0 г.

В Сазонове Протка карась добывается только в Кагульских плавнах и в оз. Белое. Удельный вес его в уловах там составляет в среднем 0,6%.

25. Серебряный карась - Карась арктический, крап - карась - Carassius auratus gibelio (Bloch), 1793

Терраутические Германия

Длина тела - 24,4 (7,4-40,4) см, вес - 380,4 (15,6-1220,0) г. Длина плавников в рр. ролле (14-17); P I 16 (14-17); V I (7) 8 к A (11) или (15) 6 (7). Боковая линия полная и насчитывает 29 5/7-75 чешуек. Дыхательные зерна однорядные 4:4:4. На первой жаберной пластине 40 (39-41) жаберных чешуек.

Antедорсальное расстояние составляет 53,17 (49,6-58,0)% от длины тела, антевентринальное - 75,69%. Боковая линия расположена ближе к грудному чешуе, чем к анальному. Расстояние между A и V равно 21,52 (20,9-23,0), а расстояние между V-A равно 29,51 (21,7-32,8)% от длины тела. Хвостовой плавник сравнительно длинный и составляет почти 1/4 части тела.

Тело карася низкое. Наибольшая высота его 41,90 (33,4-49,0), а толщина 16,36 (18,6-21,0)% от его длины.

Слизистая плаковина длины 35,20% от длины тела, но не высокий. Наибольший хвостовой его 17,45 (11,6-19,9)% от длины тела. Высота анального плавника больше (11,15%), чем его длина (11,15%). Глазница длины (16,25%) меньше брюшного (21,35%).

Голова достаточно длинная, она составляет в среднем 29,90% от длины тела. Глава меньше предчелюстного расстояния, их диаметр в среднем 21,86% от длины головы. Заглазничный отдел головы большой и составляет чуть больше 1/2 части головы. Лицо широкий - 43,77 (36,1-48,6)% от длина головы. Голова у затылка высокая, составляет в среднем 3/4 его длины.

Соотношение самцов и самок в руках Протка 1:4. В двухлетнем возрасте серебряный карась становится половозрелым. В мае - июне они откладывают на подводной растительности по 100-1000 тыс. икринок. Более количество откладываемых икринок зависит от...
в возрасте семи. Семян двуклещого возраста откладывают 16-88 тис. яиц. Икра, а трехлетнего возраста 100-860 тис. яиц. Яйцекладка происходит при наличии соперников разного возраста. Соперников другого возраста не яйцекладки икринок, а только участвуют их на переносном клонализме развития (М. И. Ольшева, 1988).

Питается серебряным карасем выюхой. Ежедневно съедает все, что попадается. В пищевом рацион кроме животного корма входит водоросли и другие растительность.

Расчет серебряного карася в бассейне Прут хороший. Годовая имел в длину 7,0 (3,1-11,0) см, веял 16,0 (5,3-50,0) г. В возрасте двух лет длина достигает 12,0 (10-16) см и вес составляет 60 (40-60) г. В три года количество достигает 15,1 (13-20) см и вес составляет 130 (100-200) г. В четвертом году 20,0 (16,0-23,0) см, веял 300,0 (200-400) г. В пятый год 30,0 (25-28) см, вес 360 (300-400) г. В шестой год 35,0 (28-30) см и вес 480,0 (360-560) г. В седьмой год 46,0 (350-500) г. В восьмой год 57,0 (450-650) г. И в девятый 70,0 (650-800) г.

Упитанность популяций 3,85 (2,9-4,5), а по возрастам следующий: в возрасте одного года в среднем 4,5. С двух до четырех лет 3,8; в 5-6 лет 3,0; в 7 лет 2,9; в 8 лет 3,0; в 9 лет 2,5.

В рибном промысле серебряный карась в среднем за последние 15 лет составляет 3,4%. Однако необходимо отметить, что после сильных наводок в 1969 г. его численность сильно возросла. Например, его удельный вес в 1969 г. в 1970 г. составлял в среднем 1,5%. И с 1971 г. его удельный вес в среднем за 5 лет 4,3 (2,2 - 4,9%). После 1969 г. он стал обычной рыбой в самом русле Прута от Дунай до коренного. В уловах сейчас преобладают 4-6-летки, следовательно, сильные наводки оказались благоприятно на увеличение численности серебряного карася.

26. Сазан — Карп — Cyprinus carpio carpio L., 1756

Терретурика: Центральная Европа

Длина тела с 43,32 (12,3-64,0) см, веял 2140,0 (61,0-5450,0) г. В III-IV 10-23; P I 13-17; V (I) 7-8 и A III 5-6. В основной длине насчитывается 37-39 чешуек. Глоточные зубы трехрядные — I, I, 2:2,1, I или I, I, 3:3,1, I. На первой жаберной дуге насчитывается 40-43 жаберных тячек. В позвоночном стебле 35-37 позвонков.

Антеноральное расстояние основной сазан P. carpio 46,48 (13,2-62,9) г., постдоральной — 19,4%, высоты носа тела в среднем 30,99% от длины тела. В позвоночном стебле 35,09 (21-26) см, в среднем 30,99% от длины тела. Позвоночное отдельное 23,02 (21-26), а в среднем 22,95 (26,8-31,6) см от длины тела. Длина основания P (18,0-30,0) см, в среднем 13,7% от длины тела. Сазан, Antipus (1909) различает для Дуная четыре формы сазана: тихую, которая у сазана сазана в среднем 15,0 см, а у сазана более 15,0 см. Наблюдения за этим видом показывают, что форма c. hungaricus Heckel, наиболее высокая форма может составлять 25,0-28,5% от длины тела и форма c. oblata Antipus, наиболее высокая форма ее составляет 25,0-28,5% от длины тела. Из прудов сазанов, добытых в русле Прута (Д. И. Попа, 1967). При этом во внимание эти признаки, что мы приходим к выводу, что в Пруте найдены только пока типичная форма сазана, так как наибольшая длина тела у сазана составляет 30,99 (26,4-36,0) см от длины тела. Голова составляет 23,38 (20,6-30,0) см от длины тела. Голова меньше (18,4% от длины тела), редко в некоторых случаях (32,5%) заглазничный отдел головы (60,64% от длины тела).

Встречается сазан во всех бассейнах Прута, как в основной реке, так и в ее притоках. В русле Прута сазаны сазаны подразделяются на р. Пруту, р. Восток Пруту, р. Восток Пруту, р. Восток Пруту. Возможно, что в Катульских течениях живет какой-то особый вид, а в Пруту — сазан. Для окончательного решения данного вопроса необходимо дополнительное изучение.
В русле Прута толстолоб стал кормом после ин-
тродукции его (1971) в пруды Катульского рыбоводного. Отмече-
ним на всем протяжении от Дуная до о. Костешты и даже выше.
Приходку во внимание, что толстолоб ценной промысловой ры-
ба, считаем, что и в Костештом водохранилище станет предметом
искусственного разведения и заражения им данного водоема. Воз-
можно, что толстолоб найдет здесь благоприятные условия в этом
районе и без вылова человека, так как места для нереста
у него будут выше водохранилища, а для нагула — в самом
водохранилище.

II. Семейство БУБОВЫЕ — COBITIDAE

I. Голец — Тридак — Hemachilus barbatulus
barbatulus (L.), 1758

terra typica: Германия

Средняялина пойменных экземпляров 6,6 (3,62—8,06) см, сред-
ний вес 3,46 (0,45—5,84) г. Упитанность в среднем I,0I (0,87 —
I,09).

D III 7—8; P I II—12; V II—6 и A II—IV 5. В хвостовом плав-
нике VII—2I лучей. На первой жаберной дуге II—13 жаберных
тканников.

Наибольшая высота тела — 12,1—15,1% от длины. Расстояние
P—V (28,2—31,6%) больше расстояния V—A (19,3—22,6% от длины
тела). Голова небольшая (19,2—22,6% от длины тела) и сплюснута
в дорсовентральном направлении.

Толстолоб очень изящен и живой в основном от мест обитания. Живут головы как в самом русле реки, так и в их при-
tоках в горных и предгорных участках Прута. У них наблюдается
половой диморфизм (P.Baláš, 1964). Нерестится голец в ап-
pеле — икс, откладывает по 3—20 яиц, икринок.

Питаются основным личинками, циклопами, биоти-
ками и личинками вестмин (Н.Д. Шишенков, 1952).

Местами является сорной рыбой, так как она конкурирует в
пищевом с других промысловых рыбами.

II. Вилок — Циллар, кишкур — Misgurnus fossilis (L.), 1758

terra typica: Европа

Длина тела 21,6 (20,6—22,5) см, вес 97,5 (41,0—129,0) г.
D II—IV (6) 6(7); P I II—12; V I II 5—6 и A II—IV 5(6).
Жаберных
тканников 14.
Тело стата о боков уделненное, покрыто мелкой чешуей. Намного меньшее тела составляет всего 12-14% от длины. Спицки и грудные плавники расположены далеко назад, антедоральное и антексцентальное расположение средний составляет 66-64% от длины тела. Хвостовой плавник закруглен. Небольшая голова, снабженная небольшой чешуей ушков, составляет 15-16% от длины тела, глаза маленькие 11-15% от длины головы.

Рыбы способны держаться на дне (P. B. M. R. 1964). Хвостовыми плавниками охватывает в основном в отводах водоемов о природном дону. Легко переносит недостаток кислорода. Питается детритом, растительностью и животными кормом. Нас личную только при некоторых плавниках, хотя вполне возможно, что хвост в других отрасках и болотах волью реки Прут, но все же малоизвестен.

Промысловое значение не имеет, хотя мною его съедобное.

3. Циповка обыкновенная — Эмгут — Cobitis taenia taenia L., 1758

ТERRATyRica: Швейцария
Длина тела — 5,92 (1,52—2,2) см, вес — 1,94 (0,12 — 0,60) г. Интенсивность — 0,99 (0,66—2,24).

Длина тела — 7,17 (6—7); P I (7—8); V II 8; A II—III 5 (6) и C (1—2). Расстояние P—V (23,6—32,0%) больше, чем расстояние V—A (23,6—28,0% от длины тела). Тела нежное 12,9—15,9%, толщина тела 7,4—11,9% от длины тела. Наличие чешуи тела 7,5—9,6% от ее длины. Голова небольшая, ее длина в среднем 17,2—20,0% от длины тела без C.

Окраска: на алебастрово-коричневом фоне два ряда темных пятен в виде полос, на основании хвоста всегда имеется темное пятно на переднелобном продольном оттенке. Спицки и хвостовой плавник имеют несколько правильных расположенных полосках черного цвета.

Циповка обитает в водах со слабым течением, о неочащенных, лиственных или зеленых донных, иногда даже варьируется в песок и подвергается иногда добычу. Хвостовая и в основном черные, линии на спинке и разных размеров. Нерест начинается в апреле и кончается в конце. Циповка мелкая, серая рыба. В промысле не имеет значения, тем более, что в водах Прута она достаточно редкая.

4. Циповка — Капа — Cobitis aurata vallicaica Balant, 1957

TERRATyRica: г. Новосибирск (ОФ)
Циповка (передневзвоздушная) циповка для басейна Прут обычна рода. Впервые была отмечена для вод Прута P. B. M. R. 1964, а до этого времени ее считали передневзвоздушной Cobitis aurata (Fili pi). Встречается циповка циповка от реки. Канун на реку Черемош и д. Солодов, ниже этого реки нами не отмечено.

Длина тела 5,89 (2,27—2,9) см, вес 2,82 (0,08—4,4) г. Упитанность равна 0,88 (0,75—1,2). В спинном плавнике III 7—8 лучей, в грудном — 7—8 лучей, в боковом — 7—8 лучей, в анальном — 7—8 лучей, в оральным — 7—8 лучей, в хвостовом — 7—8 лучей.

Циповка циповка от обыкновенной по ряду признаков: отсутствие у основания хвоста черного пятна, после и A хорошо заметны кожистые складки. Различна надбоковых и по другим признакам, но из-за малочисленности материала сделать какие-либо убедительные выводы мы считаем преждевременным.

Циповка циповка очень близка к балканской форма — Cobitis aurata balcanica Karmen, 1922. Отличается от нее в основном по длине хвостового отсека: у прутовой в среднем 80,8% (18—21,3) от длины тела, у балканской — 16,6—20,0%, у циповки циповки нижняя часть хвоста обычно усечена, а у балканской почти гладкая. На средней длине хвоста: у прутовой циповки равна 15,6—16,8 (14—16,8), у балканской — 12,8—17,9%. И.Д. Шарман (1959) описывает в водах Буковины Cobitis montana Vladikov, который ничто иное, как циповка C. b. balcanica. На все циповки в бассейне Прут указывает P. B. M. R. 1964, нами пока это не отмечено, хотя она, вероятнее всего, имеется.

По длине тела по 12—18 темных пятен неопределенной формы и чуть меньше, чем у балканской, у которой они квадратные (P. B. M. R. 1964).

Голова небольшая, занимает в среднем 19,1% от длины тела, размеры P—V в среднем 30,31%, а между и A гораздо меньше — 23,32%. Хвостовой плавник составляет 16,80 (15—16,8,5) от длины тела. Длина хвостового отсека в среднем 6,31% от длины тела. Наличие чешуи тела 10,14% от длины тела. Голова небольшая (18,60%), но чуть больше, чем ушина (17,40% от длины головы). Рыло 37,20 (32,6—45,4) от длины головы.
Вообще, как указывает ихтиолог Р. Бахманса (1964), ряд форм щипков (C. eulachon, C. balteata и C. budai) трудноотличим друг от друга, ввиду Gobius aurata довольно пластичный вид, который в каждом виде имеет свою форму.

Пруговатая щипковка и по своей биологии близка к другим щипкам пругового бассейна.

Промыслового значения не имеет.

II. Семейство COMONHE - SILURIDAE

I. Com - Comh - Silurus glanis L., 1758

Тетра типическая: Швейцария

Длина тела без S = 67,0(69,0-178,0) см, вес = 2650,0 (12,0 - 5000,0) г.

Спинной плавник сома очень короткий, насчитывает 3-5 мягких лучей. Первый луч не разветвлен. Анальный плавник очень длинный, доходит до хвостового плавника и содержит 81-90 разветвленных лучей. В грудном плавнике 13-17 разветвленных мягких лучей, по одному неразветвленному, причем довольно жесткому. В брюшном плавнике 9-13 лучей. Количество тяжей на первой жаберной дуге колеблется в пределах 11-15, на второй - 18-16, на третьей - 12-20 и на четвертой - 16-21 (Б.И. Карпцева, Л.Л. Пола, 1974).

Из характеристик пластических признаков видно, что голова у сома составляет в среднем 1/5 части тела или 19,4% от длины тела, довольно широкая 88,4 (77,4-87,8) % длины тела. Рот очень большой, овальный с тремя парными зубами. Первая пара зубов длинная, расположена по верхней челюсти. Они составляют в среднем 1/3 длины тела или 168,0 (138,0-204,0) % длины головы. Вторая пара - 6,7 % длины тела.

Рыло (предчерепное расстояние) разрежено в среднем 30,3 % длины головы, глаза маленькие, занимают всего 7,5 (5,9 - 9,7) % длины головы.

Всего исследовано 15 мериостических и 28 пластических признаков у взрослых и сеголеток сома. В результате обнаружено, что большинство признаков обладает постоянными величинами (формулы и размеры плавников, антедорсальное, антешапковое, антевентральное расстояние, наибольшая и наименьшая высота тела, длина головы и т. д.), так как среднее квадратичное отклонение (c) равно 0,59-1,50. К менее постоянным признакам относится длина усиков, постдорсальное расстояние, расстояние между P1 и др. Сеголетки отличаются от взрослых по ряду пластических признаков (антедорсальное расстояние, длина G, наибольшая высота тела, вырост B).

Возраст определяется по орезам первого луча грудного плавника. В наших сборах встречаются 4,0% сеголеток, 8,0% двухлеток, 29,6% трехлеток, 35,2% четырехлеток, 44,0% пятилеток и по 0,4-3,6% остальных возрастных групп. Сеголетки к концу июля имели длину II, 5 см, вес 17,6 см; двухлетки аналогичны - 20,0 (17,0-22,8) см и вес 135,0 (81,0-212,0) г; трехлетки в среднем - 38,5 (28,0 - 41,9) см и 430,0 (200,0-700,0) г. Четырехлетки, которые в наших сборах по количеству занимают первое место, составляют 35,2% от общего количества выловленных сомов, длина их 47,6 (42,0 - 35,9) см, вес 9840,0 (565,0-3000,0) г. Сом в возрасте десяти лет в среднем имеет 117,0 см и веет 10 кг (табл.15).

Темп роста в условиях Прут 7-14 см в год. Упитанность 0,89 (0,65-1,45). Упитанность в какой-то мере зависит от возраста. Самые упитанные сомы в сеголетнем возрасте (I, 10). На втором году жизни упитанность в среднем 0,85, на третьем году - 0,86, на четвертом - 0,89, на пятом - 0,93 и на шестом - 0,97. После шестого упитанность снижается, на седьмом году - 0,85, на восьмом - 0,80 и т. д. Отсюда следует, что в условиях Прута сомы правильно едят не более шести лет, так как пищев травят их, а упитанность после шестого года падает (табл.17).

Для определения спектра питания в полевых условиях было проанализировано 50 желудков. Из них 60% оказались пустыми, как и у сома подобного другим хищникам, попав в сету, убирают все из желудка. В остаточных случаях в желудках находились в основном речные раки, донные оселки, земноводные, млекопитающие. Сом, судя по желудку, оказывает определенное влияние на количество мирных рыб. Мы проследили влияние сома и щуки на общий улов в Причерноморских водах в период с 1960 по 1971 гг., и установили, что рост общего улова начинается в тот момент, когда удельный вес вылозанных хищников низкий (0-15%) и, наоборот, общий улов снижается, когда процент сома и щуки в рече доходит до 19-20.

В популяции сома в условиях бассейна реки Прут количество самок больше, чем самцов, в соотношении 1,5:1.

Нерестится сом в конце апреля - начале мая. После нереста в яйце остается еще достаточное количество икринок с диаметром в среднем 0,2-0,4 мм. Коефициент зрелости в этот период 0,2-0,4.
Таблица 16
Возрастной состав и темп роста осма

<table>
<thead>
<tr>
<th>Возраст</th>
<th>Кол-во экз.</th>
<th>%</th>
<th>Длина тела (см) в мае</th>
<th>Длина тела по нашим данным (см)</th>
<th>Прирост, см</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>10</td>
<td>4,0</td>
<td>13,6-19,7</td>
<td>средняя 13,6, предель 19,7</td>
<td>II,6</td>
</tr>
<tr>
<td>I+</td>
<td>20</td>
<td>8,0</td>
<td>25,4-30,4</td>
<td>25,0, предель 30,4</td>
<td>II,4</td>
</tr>
<tr>
<td>2+</td>
<td>74</td>
<td>29,6</td>
<td>36,4-41,3</td>
<td>средняя 36,4, предель 41,3</td>
<td>II,1</td>
</tr>
<tr>
<td>3+</td>
<td>88</td>
<td>35,2</td>
<td>46,0-52,0</td>
<td>средняя 46,0, предель 52,0</td>
<td>II,1</td>
</tr>
<tr>
<td>4+</td>
<td>85</td>
<td>34,0</td>
<td>58,3-61,8</td>
<td>средняя 58,3, предель 61,8</td>
<td>II,6</td>
</tr>
<tr>
<td>5+</td>
<td>6</td>
<td>2,4</td>
<td>69,5-72,2</td>
<td>73,6, предель 72,2</td>
<td>II,6</td>
</tr>
<tr>
<td>7+</td>
<td>9</td>
<td>3,6</td>
<td>91,0-93,7</td>
<td>92,1, предель 93,7</td>
<td>II,5</td>
</tr>
<tr>
<td>9+</td>
<td>1</td>
<td>0,4</td>
<td>98,6-103,4</td>
<td>103,0, предель 103,4</td>
<td>II,9</td>
</tr>
<tr>
<td>Итого</td>
<td>250</td>
<td>100</td>
<td>13,6-111,0</td>
<td>51,0, предель 111,0</td>
<td>9,5-37,0</td>
</tr>
</tbody>
</table>

Отдельные экземпляры с икрой были отмечены в середине августа. Коэффициент зрелости у них был около 36. В яйцах икринки были разных диаметров (1,0-3,0) мм, но в среднем — 2,04 мм, с преобладанием одних 1,2 мм, других 2,3-2,6 мм. Возможно, что отдельные экземпляры осма нерестятся порционно. Плодовитость осма 60-100 тис. икринок (P. Băncătescu, 1964).

Принимая во внимание, что в самом русле реки удельный вес осма гораздо больше (у г.Львао — около 40%, у г.Точлы — 48%, у г.Станкович — 62, у г.Тофче — 48, у г.Катул — 58, у г.Бадух-Аликов — 72, у г.Брианса — 51%), чем в плавках Прота, очевидно, и его прес на мierenых рыб повышается. Поэтому мы предлагаем в некоторых плавках Прота усилить досмотр осма и тем самым повысить количество мierenых рыб (сазана, леща, язя, рябца, осетровой кефаль и др.).

Учитывая вкусовые качества осма и хороший темп роста, мы считаем целесообразным выращивать его в специальных прудах на базе отходов мясокомбинатов. Можно также ввести его в остаточные пруды в качестве мелиоратора.

Таблица 17
Вес и упитанность осма по возрастам

<table>
<thead>
<tr>
<th>Возраст</th>
<th>Количество экз.</th>
<th>Вес, г</th>
<th>Упитанность</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>10</td>
<td>17,7</td>
<td>средний 17,7, предель 27,0</td>
</tr>
<tr>
<td>I+</td>
<td>20</td>
<td>135,0</td>
<td>средний 81,0-212,0</td>
</tr>
<tr>
<td>2+</td>
<td>74</td>
<td>430,0</td>
<td>средний 200,0-700,0</td>
</tr>
<tr>
<td>3+</td>
<td>88</td>
<td>884,0</td>
<td>средний 565,0-200,0</td>
</tr>
<tr>
<td>4+</td>
<td>85</td>
<td>2110,0</td>
<td>средний 1500,0-3500,0</td>
</tr>
<tr>
<td>5+</td>
<td>6</td>
<td>3860,0</td>
<td>средний 3500,0-4100,0</td>
</tr>
<tr>
<td>6+</td>
<td>6</td>
<td>4260,0</td>
<td>средний 3900,0-4700,0</td>
</tr>
<tr>
<td>7+</td>
<td>9</td>
<td>6500,0</td>
<td>средний 5400,0-7500,0</td>
</tr>
</tbody>
</table>

Источник: Băncătescu, 1964. В наших обоях имеется всего три экземпляра, поиманные в районе г.Новосёла (УСР), следовательно в реке Прот очень редкая рыба. К.Д.Шелевки (1959) отмечает, что в районе г.Чернобыль в весенний он промышляет местные жители, но в небольшом количестве.

X. Семейство ОСМОВЫЕ — РИЗОТИДАЕ

I. Пада — Осма — Lota lota (L.), 1758

Терра типиса: Европа

Длина тела 25-30 см и вес 135-240 г. D₁ 12-12; D₂ 75-78; P 18-20; v 7. Кожа очень мелкая. Боковые тычинки 7-8. Боковая линия не полная. Антеградное расстояние 37% от длины тела. Наклонная высота тела 18%, а наименьшая — 10% от длины тела. С сухой довольно больная, составляет 25% от длины тела. На подбороде один усик. Пишевод и жаберные плавники сужены.

Нерестится осенью. Животные питается рыбой или другой животной пищей (P. Băncătescu, 1964).

X. Семейство ЛОСТВИЧЕВЫЕ — ВЕБСИДАЕ

I. Судак — Рыба — Luciotheja luciotheja (L.), 1758

Терра типиса: Центральная Европа

Средняя длина тела поиманных экземпляров 23,0 (7,4-53,0) см, вес 316,2 (5,8-2000,0) г. Упитанность I,29 (0,76-1,63). D₁ Ш-XY (XY); D₂ II-IV 20-30; v 14-15 (16); v 15 и A III (IV)

Зам. I а 28
II-13. В боковой линии 83,1(86-83) мм, чешуй. На первой жаберной дуге по наружной стороне находится 12-15 жаберных тычинок, а по внутренней - 10-14. На второй дуге соответственно - 9-13 и 8-10, на третьей - 6-9 и 7-5; на четвертой - 2-8 и 0-6.

Антедорсальное расстояние больше 82,87 (60,6-64,8)% от длины тела без C. Брюшные плавники расположены почти под брюшными. Расстояние между ними незначительно и равно 7,45% от длины тела. Хвостовой стебель чуть больше 1/4 длины тела. Его вы́сота в среднем равна 1/5 длины. Спицы плавников почти одинаковые как по высоте, так и по длине. Длина d1 равна 22,80, а d2 - 23,40%, наибольшая высота первого спинного плавника 14,84, второго - 15,80% от длины тела. Длина грудного плавника почти равна длине брюшного плавника (у первого 17,48, у второго - 17,60% от длины тела).

Голова судака довольно большая и составляет в среднем 28,30 (26,0-29,6)% от длины тела. Рыло небольшое, чуть больше 1/4 головы, глаза маленькие, в диапазоне 18,24 (14,1-22,4)% от длины головы, заглаженный отрезок головы большой - 50-60% от длины головы. Лоб незначительный (19,09%) и голова невысокая. Наибольшая вмеса головы у взрослых в среднем 55,16% от длины головы.

Судак обитает в водоемах со сладкой водой, в мерзлой и соленой морской воде. В Черное море он не держится, а в морских водоемах он встречается на глубине 50-300 м. Икринки (E. D. и M. D. 1944) на твердой среде: окклюдентные и керамические в юго-западной части, в некоторых районах.

Половой диморфизм слабо выражен, самки чуть больше самцов. Половозрелость наступает на 3-3 году жизни у самцов и на 3-4 у самок (И. Л. Сыревский, 1940). Через 6-12 дней из икринок появляются мальки длиной 5-6 мм. Темп роста судака в Черном море следующий: вес в озерах 12,0, на восток 30,28, на запад 25,9 (18-40) г, на восток 18,38 (50-560) г, на восток 37,2 (30-45,9) г, на восток 47,0 (280-910) г, на восток 51,0 (42-63) г, на восток 920,5 (810-2000) г.

Мальки питаются планктоном, сеголетки постепенно переходят на мизид, бокоплавы, крабы, на кальмары, впоследствии яйца и ракообразных. Взрослые судаки в условиях Прота питаются в основном крупными рыбами (уклей, бельгиязка, пескарь и др.).

Судак - ценный промысловый рыб, но в р. Прота малочисленен. Удельный вес в контролируемых уловах 0,4%. Связано это, видимо, с небольшим течением и незначительной прозрачностью воды в Проте. После пуска Кирилловской ГЭС гидрологические режим изменения и появляется возможность в охладении водохранилища выращивать товарных судаков. В уловах в Киргизских поймах в среднем он составляет 0,5%. Правда, после сильных паводков (1969) его удельный вес в уловах возрос до 3,9%.

2. Окунь - Биология Perca fluviatilis fluviatilis L., 1758

Terrae typicas: Европа

Длина 17,85 (6,2-22,6) см, вес 93,0 (6,5-320,0) г. D1 (XII) (XIII) XIV (XV-XVI); D2 II-III 13-14; P I 13-14; v 1 5 (6) и a 1 7 (8-9). На первой жаберной дуге от боков стороны 14-24 тычинок, с внутренней - 12-17, на задней 12-14, на четвертой - 12-13 и 10-14, на четвертой - 10-14 и 5-9. В боковой линии наложено в среднем 64 (58-68) чешуек.

Большинство плоских признаков склонны к постоянным величинам. Только антедорсальное расстояние (s = 2,50), наибольшая высота тела (s = 2,62), длина основания первого спинного плавника (s = 2,38), диаметр глаз (s = 2,36), заглаженный отрезок головы (s = 3,06) и высота головы у взрослых иногда заметно раньше.

Уловы в уловах Прота имеют антедорсальное расстояние, равное 31,42 (29,9-33,4) % от длины тела. Антедорсальное расстояние (65,50%) почти вдвое больше антедорсального (35,72%) от длины тела.

Брюшные плавники расположены почти рядом с грудными, расстояние между P и v в среднем 9,16% от длины тела. Расстояние между брюшными и анальными плавниками грудные больше (34,86%).

Хвостовой стебель почти круглый, его длина в среднем 32,34, а высота 8,87% от длины тела. Наибольшая высота тела 30,90 (26,5-34,5) % от длины тела.

Длина грудного плавника (19,20%) равна длине брюшного (18,15 % от длины тела). Хвостовой плавник составляет 15,40 (13,1-20,0) % от длины тела. Первый спинной плавник (31,80%) на много длиннее второго (18,14) % и чуть выше его. Голова составляет 31,60% от длины тела.

Рыло короткое, равно 1/4 длины головы, глаза небольшие, их диаметр в среднем 22,19 (16,7-28,1) % от длины головы.
Окунь притягивается плавными водами, а в самой реке он встречается очень редко. В плавнях он в конце марта и в апреле откладывает от 12 до 30 тыс. икринок, из которых через 2-3 недели появляются мальки. В отлете преобладают омеки из расчета 3:1.

Темп роста зависит от места обитания и от самой популяции. В пойменных озерах р. Прут темп роста был изучен С.Г. Пипининым (1966). По его данным, двухлетие в длине имеет 9-7 см и весит 6,5 г, тетрахит 10,7 см и 31,0 г, четырехлетки 12,4 см и 44,3 г, пятилетки 14,2 см и 48,6 г, шестилетки имеют длину 17,7 см и весят 96,5 г. Темп роста окуна в р. Днепр (М.Ф. Щербенко, 1957) в первые два года ниже, чем в р. Прут, а потом набирает.

Мальки окуней питаются волоконнякокором, а через месяц переходят к кишечному образу жизни и в его рацион входят уже и мальки других рыб. В береговых озерах окунь питается в основном икры и мальками рыб (каракас, верховка, др.), насекомыми, червями и др. Упитанность окуна 2,2 (0,87-3,90).

Вечером окунь в речном промысле невелик, его удельный вес за 25 лет (1950-1974 гг.) 0,3 (0,1-3,3%). Правда, часть их может идти на рыбные пункты как мелочь 1-3-й групп вместе с карасем, крапивником и другими мелкими рыбами и поэтому полному учету не поддается. Мясо его вкусное и в весенний период окуна реализуют в свежем, соленом и конченом виде. После сильного паводка (1969 г.) окунь, как и другие лимонники в притруптовских озерах, стал очень малочислен.

В водах Прута из семейства окуневых встречаются еще виды:
3. Малый чоп - Fucar - Aspro streber Siebold, 1863
 Terra typica: Дунай!
 Малый чоп встречается очень редко. В пойменных озерах он откладывает икринки на песчаных местах, в октябре 1961 г. было обнаружено 20-28,0 г. Малый чоп - эндемичный вид для дунайского бассейна.
4. Большой чоп - Петар - Aspro zingel (L.), 1758
 Terra typica: Дунай!
5. Ер - Любоци - Acerina oestua (L.), 1758
 Terra typica: Европа
6. Ер палладиев - Фусфер - Acerina schlaetzer (L.), 1958
 Terra typica: Дунай!

II. Семейство УЛЯСТЫЕ ОКУНИ - CENTRARCHIDAE

I. Солнечная рыба - Бикан-ореа - Lepomis gibbosus (L.), 1758

Terra typica: Каролина (США)

Впервые для вод Прута была отмечена в 1934 г. зоологом И. Воланом (1934), а позже и другими авторами. Встречается в Калининских плавнях и в оз. Белое.

Длина тела 12-10 см, вес в среднем 34,60 (14,4-100,0) г. Упитанность очень велика, колеблется 3,9 (3,42 - 4,66).

Солнечная рыба в условиях Прута характеризуется тем, что DX 11 10-11 (12); R 13 13 (14); V 1 5 6 и A 11 11 9-11 (12). Боковая линия имеет следующую формулу: 35 4-6 24 42.

Тело солнечной рыбы в среднем, ее наклонная высота составляет 45,76 (43,4-47,4%) от длины тела, сжата в боков, наклонная толщина равна 16,60 (15,3-18,9%) от длины тела, антодоральное расстояние 45,04% меньше антагонального (63,38% от длины тела). Растительные клетки мелкими и барханными плавниками в виде маленькой (11,85%) брови между боковыми и анальными плавниками (23,88% от длины тела). Спинной плавник очень длинный и составляет в среднем 45,49 (41,2-48,3%) от длины тела. Высота спинного плавника (18,35%) почти равна высоте анального плавника (18,60% от длины тела). Грудной плавник также достаточно большой, он равен 30,50% от длины тела. Грудной и хвостовой плавники почти одинаковые, первый имеет в длину 23,05 (20,4-26,7%), а второй в длину 23,08 (21,1-24,9%) от длины тела. Голова довольно большая и составляет 35,00 (32,2-37,8%) от длины тела. Рыло небольшое (30,32%), оно чуть меньше ширины лба, мезолимфическое расстояние 37,50 (30,3-42,4%) от длины головы. Глаза в диаметре имеют 23,20% от длины головы.

Окраска тела очень яркая и в основном преобладает оранжево-желтый цвет с отдельными темными пятнами на каждой чешуе. За вершинами лучков плавников ярко-оранжевым цветом. Правда, солнечная рыба большинстве мест со стационарные или слабо текущих вод, хорошо прогреваемая на солнце. Не встречается в основном лете.

Из 25 экземпляров 16 самцов и 9 самок. Питается солнечная рыба разными беспозвоночными животными, в основном хищниками. В их пищевом рационе встречаются икринки и мальки других рыб.
Земесятые БЬЮКОВЫЕ — GOBIIDAE

В водах Прута представлено два вида:

I. Бьюк-восуш-ник — Гроб — Gobius fluvialis fluvialis Pallas, 1811

Terrautypica: Реки Черноморского бассейна

2. Бьюч-сучик — Козел — Proterorhinus marmoratus (Pallas), 1811

Terrautypica: Севастополь

Земесятые ПОДКАМЕНЩИКИ — COTTIDAE

Представлено два вида:

I. Подкаменщик — Сюляв — Cottus gobio gobio L., 1758

Terrautypica: Европа

2. Подкаменщик пестроногий — Сюлявская роса, росилопись — Cottus poecilopus poecilopus Heckel, 1843

Terrautypica: Б. Висла

Земесятые КОЛОШКИ — GASTROSTEIIDAE

В Пруте встречается один вид — Кызская колюшка — Pungitius platygaster platygaster (Kessler), 1859

Terrautypica: Одесса

Земесятые СРОСТНОЧЕХЛЯТЫЕ — SYNGNATHIDAE

Один вид — Морская рыба — Ak-da-мере — Syngnathus nigrolineatus nigrolineatus Eichwald, 1893

Terrautypica: Крым

Литература

Абдурахманов К. А. Рыбы пресных вод Азербайджана. Баку, Изд-во АН Азерб.ССР, 1962.

Амброс А. И. Рыбы Днепра, Кубани и Днепропетровско-Бугского лимана. Киев, Изд-во АН УССР, 1956.

Балабан Н. П. До вивчения ізоляциони басейну верхнього Дністра. Наук. зап. природ.-муз. ін.-ту геод. і геох. Вид-во АН УРСР, 1949.

Бер Г. О. Кятия. Страна, люди, хозяйство. — "Отгни". Лт, 1918.

Билях М. Д. Розмір, віку та темпу росту ляш під Дніпра. Праці Ін-ту гідробіолог., 1948, № 22.

Ворзенко М. П. Материалы по систематике, биологии и промыслу куриных рыб. — "Тр. каф. биоразведения фаун на ВУЗ", 1950, т.3.

Великохатько Ф. Л. Новые формы рыб (Vimba vimba) из Днепра и Буга. — "Изв. АН СССР, Сер. биол." 1940, № 2.

География Молдавской ССР, учебное пособие для VII кл. под ред. Мирош Д.А. и Радулу М.М. Кшипнев, 1963.

Дворянин А.Н. Каталог пресноводных рыб Азербайджана. Баку, 1949.

Драгин Н.А. Условия структурной экологии в изучении видового состава пресноводных рыб СССР. - "Изв. НИИ озер‐ ного и речного рыболовства", 1972, № 71.

Егерман Ф.Ф. Материалы по изучению биологии Курчанского пруда (засеянная река Днестр) по сборам 1922-1925 гг. - Тр. Воен. гос. Черноморское научно-исследовательское учреждение, 1926, т. 2, № 1.

Ерве, Б.П. Краткие сведения о реке Прут. Одесса, 1909.

Завьялов П.А. и др. Биология и промысловое значение рыб (вилья) Европы. Вильнюс, "Мицкис", 1970.

Иголонов Б.Е. Общая гидрологическая характеристика СССР. В кн.: Очерки по гидрологии рек СССР, М., 1963.

Ирихомович А.И. О некоторых закономерностях роста и нереста карпов. - "Тр. Ин-та биологии рыбохоз. и рыбаководства АН СССР", 1960, т. 2, № 2.

Кармаков А.И. Дополнительный материал о реке Прут. - В кн.: "Рыбоводство". Киев, 1974.

Козин Е.С. Биологические и географические очерки. Кишинев, 1980.

Козаков Б.В. К вопросу о присутствии в водах Грузии украинской нягени. - "Тр. Тифлисского гос-ва", 1942, т. ХХП.

Колесов А.И. Короткий визионер рыб Закарпатской области. УРСР. Ужгород, 1949.

Крыжановский С.Д. Семейство карповых рыб (Cyprinidae) - "Зоол. журнал", 1947, т. 26, № 1.

Макулов В.А. К систематике и биологии щуки Фарахадского водохранилища. - "Изв. Отд. зоотехники и рыбоводства АН УССР", 1956, вып. 15.

Маркевич О.О. К вопросу о гидробиологическом районировании рек УССР. Кишинев, "Радянская школа", 1954.

Могилевский Н.Н. Географический очерк Бессарабии. Кишинев, 1910.

Набережный А.И. Зоопланктон Дубоссарского водохранилища, как составная часть кормовой базы промысловых рыб. Автореф. канд. дис. Кишинев, 1958.

Напревчиков М.Ф. Дунайский лещ. Кишинев, Изд-во АН УССР, 1958.

Никулинский С.Г. Гидробиологический режим в районах промысловой деятельности и в водоемах озер Прута и его поблизости. - "Карпобиология", 1955, № 1.

Никулинский С.Г. Определение состояния промысловых и водоемов реки Прут и его поблизости. - "Карпобиология", 1956, № 6.

Павлов А.И. Природные лещи в сравнении с днепровским. - "Зоол. журнал", 1966, т. 36, вып. 6.

Павлов А.И. Природопользование и промысловый районирования причальных промыслов. - "Методы и природопользования в природных водных объектах", 1964, т. 4, вып. 1(30).

Панько К.В. Рубан Т.Г. К проблеме комплексного использования природных ресурсов беесовская р. Прут. Кишинев, 1960.

Попа Л.Л. Рыбоводство реки Прут. - "Учеб. пособие", Пряпоградского гос. пед. ин-та, 1911, вып. 12.

использования внутренних водоемов южной зоны СССР, Кишинев, "Штицун", 1962.

Попа Л. Л. К вопросу о составе и распределении молоди рыб в р. Прут. - В кн.: Тезисы II науч. конф. молодых учен. Молдавии, Кишинев, "Карта Молдавеняка", 1964, вып. 2.

Попа Л. Л. Численность отдельных промысловых рыб р. Прут. - "Учен. зап. Тираспольского гос. пед. ин-та", Кишинев, "Карта Молдавеняка", 1964 а.

Попа Л. Л. О карповых рыбах р. Прут. - В кн.: Материалы зоол. совещания по проблеме "Биологические реконструкции национального использования и охраны фауны южной зоны СССР", Кишинев, "Карта Молдавеняка", 1965 а.

Попа Л. Л. К вопросу изучения длии в низовьях Прута. - В кн.: Фауна Молдавии и ее охрана. Кишинев, 1970 г.

Попа Л. Л. Рыбы и рыбный промысел р. Прута прирднугских плавней. - В кн.: Охрана речных запасов и увеличение продуктивности водоемов южной зоны СССР. Отдел печати КУ, Кишинев, 1970 а.

Протасов В. Р., Мельников В. Н., Дубровский В. А. Научное о промыше рыбоводстве. М., "Знание", 1973, № II.

Протасов А. А. Ручьевая и радужная форель в Прикарпатских районах УССР. - "Тр. НИИ прудового и озерно-речного рыбного хоз-ва", 1949, № 6.
Римсо Н. Л. Кантемир как географ. - "Учен, зап. Тиранской szkoły геогр. пед, ин-та", Кишинев, 1960, вып. II.

Сиб ровский И. Я. Материалы по экологии размножения хека и судака на Днестр. - Работы Донецко-Кубанской научной рыб-хозяйственной станции, 1940, вып. 6.

Глаузован Ф. Некоторые особенности размножения и развития аральской белуги. - "Вестник Карааламского филиала АН в СССР", 1964, № 15.

Томатик Е. Б. Ихтиофауна Днестровского водохранилища, ее изменения и пути увеличения запасов промыслово-ценных рыб. - В кн.: Днестровское водохранилище. М., "Наука", 1964.

Ципланов С. А. Лещ. - "Тр. Татарского отделения озерного и речного рыбного хозяйства", 1972, вып. 12.

Шваревич И. Д., Иошук К. Д. Материалы по экологии дунайского лосося и его использованию для рыбоводных целей на Буковине. - Ежегодник Черновецкого ун-та, 1957.

Щербуха А. Н. Изучение морфологической изменчивости шкуры обыкновенной из некоторых рек Украины. - "Вестн. зоол.," 1974, № 2.

Ярошко М. Ф. Гидрофауна Днестра. М., Изд-во АН СССР, 1957.

Антипя Ге. Fauna ictiologică a României, București, 1909.

Горакуса С. Tratat de ictiologie, București, 1952.

Nowicki M. O rybach dorzeczy Wisy, Styru, Bieszczad i Prut w Galicyi. Krakow, 1889.

Papadopol M. Date privind variația morfologică a boarței (Rhodeus sericeus amarus).-"St.cerc.biol. anim.," v.12, 1960.

Предисловие...... 3
ФИЗИКО-ГЕОГРАФИЧЕСКАЯ
ХАРАКТЕРИСТИКА БАССЕЙ-
НА РЕКИ ПРУТ 5
СИСТЕМАТИЧЕСКИЙ ОБЗОР
РЫБ БАССЕЙНА РЕКИ ПРУТ II

Леон Леонович Попла

РЫБЫ БАССЕЙНА РЕКИ ПРУТ
(СИСТЕМАТИЧЕСКИЙ ОБЗОР)

Утверждено к изданию
Ученым советом Тираспольского
государственного педагогического института им. Т.Г.Шевченко

Редактор Л.А.Савва
Художник А.Д.Вечерин
Художественный редактор В.А.Чукин
Технический редактор Г.Н.Константинова
Корректор Л.М.Мали

Издательство "Штилица", Кишинев, 277028, ул.Академическая, 3

Формат 60х90 1/16. Бумага офсетная. Усл. печ. листов 5,50.
Уч.-изд. л. 5,25. Тираж 945. Цена 54 коп. Запас 128.
Типография издательства "Штилица", 277004, Кишинев, ул.Бернардова, 10
Выходит в свет в издательстве
"ВИШНЯ" в 1976 году

Выскуя Н.В. МИКРОЭЛЕМЕНТЫ В ЖИЗНИ ФИТОПЛАНКТОНА

Представлены результаты исследований численности и биомассы планктонных водорослей и концентрирования микроэлементов в некоторых водоемах Молдавии различных почвенно-климатических зон. Установлены коэффициенты миграционной способности марганца, цинка, меди, кобальта и меди для разных водоемов по системе почва – вода. Установлено влияние различных доз микроэлементов на рост численности и биомассы водорослей, изменение концентрации водородных и бикарбонатных ионов.

Книга представляет интерес для гидробиологов, физиологов, гидрохимиков, агрохимиков, биохимиков.

Записи направляйте по адресу: 277001, Кишинев, ул. Пирогова, 26, "Академия"